The Potential of Triclabendazole in Combination with Praziquantel for the Treatment of *Schistosoma mansoni* Infections

by

Bong Sze How BSc. (Hons.)
This thesis is presented for the degree of
Doctor of Philosophy

of

School of Veterinary Sciences
Murdoch University
Western Australia

2007
I declare that this thesis is the account of my own research, and contains as its main content work which has not previously been submitted for a degree at any tertiary institution.

Bong Sze How
Abstract

Previous work has suggested that triclabendazole (Tcbz), a member of the benzimidazole group of compounds, possessed efficacy against *Schistosoma mansoni* (*S. mansoni*). In view of recent indications in praziquantel (Pzq) treatment failures and loss of sensitivity, it is imperative that new anti-schistosomals are developed as contingent treatment options, while resistance alleles, if any, remain at low frequencies. While recent studies have indicated that Tcbz monotherapy exert weak anti-schistosomal effects, the combined application of Tcbz with Pzq has not been explored. To assess this hypothesis, triclabendazole and its metabolites were initially assessed against the many life-stages of *S. mansoni in vitro*. Combination drug and isobologram analyses against adult *S. mansoni* was also performed, and subsequently assessed against other parasite species to assess the specificity of such effects. Subsequently, the drug combinations were assessed against *S. mansoni in vivo*. A cost-effectiveness model was then developed to predict the feasibility of administering Pzq-Tcbz drug combinations in Senegal. It was concluded that triclabendazole and its metabolites possessed good efficacy against immature schistosomula, although weak efficacy was observed against adult *S. mansoni*. Upon combination with Pzq, however, a strong synergistic effect against adult worms were observed *in vitro*. Praziquantel and Tcbz were also shown to possess unique and independent ovicidal modes of action that can be clinically significant. More importantly, *in vivo* drug trials concluded that the combinations exerted additive effects against *S. mansoni* harbored in mice. Economic modeling and cost-effectiveness analysis further demonstrated the feasibility of this drug combination and showed that the drug combinations may represent a new line of treatment against mansonial schistosomiasis.
Table of Contents

Thesis declaration ii
Abstract iv
Table of Contents v
List of Figures and Tables viii
Abbreviations xiv
Acknowledgements xvi
Publications and Presentations xvii
Dedication xviii

Chapter 1 Introduction

1.0 General introduction 1
1.1 Life cycle 1
1.2 Pathology 3
1.3 Immunology 3
1.4 Genomics and biochemistry 4
1.5 Transmission and Epidemiology 5
1.6 Diagnosis 5
1.7 Control 6
 1.7.1 Praziquantel control 7
 1.7.1.1 Pharmacodynamics and metabolism 8
 1.7.1.1 Mechanism of action 8
 1.7.2 Triclabendazole control 10
 1.7.2.1 Pharmacodynamics and metabolism 11
 1.7.2.2 Mechanism of action 12
 1.7.2.3 Cytoskeletal proteins as Schistosoma drug targets 13
1.8 Mass chemotherapeutic regimens for the treatment of schistosomiasis 15
1.9 Refractoriness to praziquantel treatment 16
1.10 Combination chemotherapy 16
1.11 Cost-effectiveness of praziquantel for control 19
1.12 Aims and hypothesis 23

Chapter 2 General Materials and Methods

2.1 Growth medium 24
 2.1.1 Schistosoma medium 169 24
 2.1.2 Giardia medium 24
 2.1.3 Haemonchus medium composition 24
2.2 Biomphalaria glabrata maintenance 25
2.3 Biomphalaria glabrata infection with miracidium 25
2.4 Cercariae shedding 26
2.5 Infection of definitive mouse host 26
2.6 In vitro cultivation of immature schistosomulum 26
2.7 Schistosoma egg extraction from liver 27
2.8 Haemonchus egg extraction from faeces 28
2.9 In vitro drug evaluation 28
 2.9.1 In vitro drug evaluation against immature schistosomulum 28
 2.9.2 In vitro drug evaluation against mature worms 29
2.10 Evaluation of combination drug treatment 30
 2.10.1 Evaluation of drug combinations against Schistosoma mansoni 30
2.10.2 Evaluation of drug combinations against *Giardia duodenalis* 30
2.10.3 Evaluation of drug combinations against *Haemonchus contortus* 31
2.11 Evaluation of drug action against *Schistosoma* eggs 32
 2.11.1 Assessment of praziquantel-induced hatching of eggs 32
 2.11.2 Assessment of triclabendazole and metabolites on egg viability 32
2.12 Dose response and statistical analysis 33

Chapter 3 Evaluation of the effects of triclabendazole and metabolites against *Schistosoma mansoni* in vitro

3.1 Introduction 34
3.2 Materials and Methods 36
 3.2.1 *Schistosoma mansoni* maintenance 36
 3.2.2 Drug treatment 36
 3.3 Drug efficacy scores 37
 3.4 Dose response and statistical analysis 37
3.3 Results 38
 3.3.1 Efficacy of triclabendazole against immature schistosomulum 38
 3.3.2 Efficacy of triclabendazole and metabolites against adult worms 42
 3.3.3 Drug efficacy scores 46
3.4 Discussion 53

Chapter 4 Evaluation of the ovicidal activity of praziquantel, triclabendazole and its metabolites against *Schistosoma* eggs

4.1 Introduction 59
4.2 Materials and Methods 61
 4.2.1 Preparation of *Schistosoma* eggs 61
 4.2.2 Evaluation of the effects of praziquantel on egg hatching 61
 4.2.3 Evaluation of triclabendazole and its metabolites on egg viability 62
 4.2.4 Evaluation of calcium blockers on eggs 62
 4.2.5 Dose response and statistical analysis 63
4.3 Results 64
 4.3.1 Effects of praziquantel-induced hatching of *Schistosoma* eggs 64
 4.3.2 Morphological effects observed in eggs exposed to praziquantel 65
 4.3.3 Effects of calcium blockers and inducers on eggs 66
 4.3.3 Effects of triclabendazole and its metabolites on egg viability 69
4.4 Discussion 77

Chapter 5 Evaluation of the combinatorial effects of praziquantel and triclabendazole against *Schistosoma mansoni*, *Giardia duodenalis* and *Haemonchus contortus*

5.1 Introduction 81
5.2 Materials and Methods 83
 5.2.1 *Schistosoma* maintenance 83
 5.2.2 *Giardia* maintenance 83
 5.2.3 *Haemonchus* maintenance 83
 5.2.4 Experimental design 83
 5.2.5 *In vitro* efficacy of single and combination treatments of praziquantel triclabendazole-sulphoxide 84
 5.2.5.1 *Schistosoma mansoni* 84
 5.2.5.2 *Haemonchus contortus* 85
 5.2.5.3 *Giardia duodenalis* 85
 5.2.6 Statistical analysis 86
 5.2.7 Combination dose response and isobologram analysis 86
5.3 Results

5.3.1 Efficacy of praziquantel and triclabendazole-sulphoxide against *Schistosoma mansoni* 88
 5.3.1.1 Efficacy of individual drug treatment 88
 5.3.1.2 Efficacy of combination drug treatment 88
5.3.2 Efficacy of drugs against *Haemonchus contortus* 91
 5.3.2.1 Efficacy of individual drug treatment 91
 5.3.2.2 Efficacy of combination drug treatment 92
5.3.3 Efficacy of praziquantel and triclabendazole-sulphoxide against *Giardia duodenalis* 95
 5.3.3.1 Efficacy of individudal drug treatment 95
 5.3.2.2 Efficacy of combination drug treatment 96

5.4 Discussion 99

Chapter 6 The efficacy of a combination of praziquantel and triclabendazole for the treatment of mice infected with *Schistosoma mansoni*

6.1 Introduction 103
6.2 Materials and Methods 104
 6.2.1 *Schistosoma* maintenance 104
 6.2.2 Drug efficacy 104
 6.2.3 Oogram pattern and tissue egg load analyses 104
 6.2.4 Statistical analysis 105
6.3 Results 106
 6.3.1 Tissue egg load analysis 106
 6.3.2 Oogram pattern analysis 106
 6.3.3 Worm burden reduction 108
6.4 Discussion 111

Chapter 7 Economic analysis: feasibility study of praziquantel-triclabendazole drug combinations for the treatment of schistosomiasis

7.1 Introduction 115
7.2 Materials and Methods 117
 7.2.1 Data sources 117
 7.2.2 General assumptions 117
 7.2.3 Drug and operational costs 117
 7.2.4 Patient number projections 119
 7.2.5 Cost-effectiveness analysis 120
 7.2.6 Stochastic model development 121
7.3 Results 122
 7.3.1 Production cost of praziquantel and triclabendazole 122
 7.3.2 Sale price of praziquantel and triclabendazole 122
 7.3.3 Sale price of praziquantel and triclabendazole drug combinations 123
 7.3.4 Patient number projections 124
 7.3.5 Drug costs, operational costs and total costs of programme 125
 7.3.6 Cost-effectiveness analysis 126
7.4 Discussion 127

Chapter 8 General Discussion 131

References 136
Key terminology and definitions 161
List of figures and tables

Chapter 1

Figure 1.1 Life-cycle of *Schistosoma mansoni* 2
Figure 1.2 Praziquantel chemical structure 7
Figure 1.3 Triclabendazole chemical structure 11

Chapter 2

Table 2.1 Composition of culture medium 169 24
Table 2.2 Composition of *Giardia* medium 24
Table 2.3 Composition of *Haemonchus* medium 24

Chapter 3

Figure 3.1 Dose response curve of triclabendazole evaluated against immature schistomulum at Week four stage and assessed for seven days after exposure 39
Figure 3.2 Morphological changes observed in four week old immature schistosomula exposed to varying concentrations of triclabendazole *in vitro*. 41
Figure 3.3 Dose response curve of praziquantel assessed against mature worms at 24, 48 and 72 hrs post exposure. 44
Figure 3.4 Dose response curve of triclabendazole assessed against mature worms at 24, 48 and 72 hrs post exposure. 44
Figure 3.5 Dose response curve of triclabendazole-sulphoxide assessed against mature worms at 24, 48 and 72 hrs post exposure. 45
Figure 3.6 Dose response curve of triclabendazole-sulphone assessed against mature worms at 24, 48 and 72 hrs post exposure. 45
Figure 3.7 Morphological changes observed in *Schistosoma mansoni* after exposure to triclabendazole for 24 hrs. 48
Figure 3.8 Morphological changes observed in *Schistosoma mansoni* after exposure to triclabendazole-sulphoxide for 24 hrs. 49
Figure 3.9 Morphological changes observed in *Schistosoma mansoni* after exposure to triclabendazole-sulphone for 24 hrs.
50

Figure 3.10 Morphological changes observed in *Schistosoma mansoni* after exposure to praziquantel for 24 hrs.
51

Figure 3.11 Untreated 49-day old mature worms in DMSO drug vehicle.
52

Table 3.1 The concentration of triclabendazole and praziquantel required to kill 50% of Wk four immature schistosomulum *in vitro*.
40

Table 3.2 Effective concentration required to kill 50% (EC\textsubscript{50}) of adult *Schistosoma mansoni* worms at four hour time intervals.
43

Table 3.3 Percentages of worms (%) scored according to efficacy criteria (contraction and motility).
47

Chapter 4

Figure 4.1 Representative images of *Schistosoma mansoni* (left column) and *Schistosoma japonicum* (right column) eggs after exposure to 10µM of praziquantel.
67

Figure 4.2: *Schistosoma mansoni* (left column) and *Schistosoma japonicum* (right column) eggs treated with praziquantel showing hatching of miracidium.
68

Figure 4.3 Dose response curves of *Schistosoma mansoni* eggs exposed to triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone for 24hrs
71

Figure 4.3 Dose response curves of *Schistosoma japonicum* eggs exposed to triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone for 24hrs
71

Figure 4.5 Microstructural effects of *Schistosoma japonicum* eggs exposed to triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone.
72

Figure 4.6 Microstructural effects of *Schistosoma japonicum* eggs exposed to various concentrations of triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone.
73

Figure 4.7 Microstructural effects of detached vitelline membrane and miracidium of *Schistosoma japonicum* eggs after exposure to

ix
triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone.

Figure 4.8 Representative images of *Schistosoma mansoni* eggs after exposure to triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone for 24 hours.

Figure 3.9 Representative images of the microstructural effects of discharged *Schistosoma mansoni* miracidium following 24 hours exposure to triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone.

Table 4.1 Mean length of time following the addition of praziquantel before the activation of eggs were observed.

Table 4.2 Mean length of time required for *Schistosoma mansoni* and *Schistosoma japonicum* eggs to hatch.

Table 4.3 Percentage of *Schistosoma mansoni* and *Schistosoma japonicum* eggs hatched after exposure to triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone at 10nM, 100nM, 1µM, 10µM, 100µM and 1mM.

Table 4.4 Concentration of triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone required to kill 50% of *Schistosoma mansoni* and *Schistosoma japonicum* eggs.

Chapter 5

Figure 5.1 Microstructural effects of adult *Schistosoma mansoni* treated with an EC$_{50}$ + EC$_{50}$ combination of praziquantel and triclabendazole-sulphoxide.

Figure 5.2 Proportion of *Schistosoma mansoni* worms killed by triclabendazole-sulphoxide plotted against the praziquantel EC$_{50}$, EC$_{25}$ and EC$_{10}$ concentrations.

Figure 5.3 Proportion of *Schistosoma mansoni* worms killed by praziquantel plotted against the triclabendazole-sulphoxide EC$_{50}$, EC$_{25}$ and EC$_{10}$ concentrations.

Figure 5.4 EC$_{90}$ isobologram of praziquantel and triclabendazole-sulphoxide combinations assessed against *Schistosoma mansoni*.
Figure 5.5 Proportion of *Haemonchus contortus* worms inhibited by triclabendazole-sulphoxide plotted against the praziquantel EC$_{50}$, EC$_{25}$ and EC$_{10}$ concentrations.

Figure 5.6 Proportion of *Haemonchus contortus* worms inhibited by praziquantel plotted against the triclabendazole-sulphoxide EC$_{50}$, EC$_{25}$ and EC$_{10}$ concentrations.

Figure 5.7 EC$_{70}$ isobologram of praziquantel and triclabendazole-sulphoxide combinations assessed against *Haemonchus contortus*.

Figure 5.8 Proportion of *Giardia* trophozoites inhibited by triclabendazole-sulphoxide plotted against the praziquantel EC$_{50}$, EC$_{25}$ and EC$_{10}$ concentrations.

Figure 5.9 Proportion of *Giardia* trophozoites inhibited by triclabendazole-sulphoxide plotted against the praziquantel EC$_{50}$, EC$_{25}$ and EC$_{10}$ concentrations.

Figure 5.10 EC$_{50}$ isobologram of praziquantel and triclabendazole-sulphoxide combinations assessed against *Giardia duodenalis* trophozoites.

Table 5.1 Combinations of the EC$_{50}$, EC$_{25}$ and EC$_{10}$ values of praziquantel and triclabendazole-sulphoxide used in this study.

Table 5.2 Concentrations of praziquantel and triclabendazole-sulphoxide required to kill 50% (EC$_{50}$), 25% (EC$_{25}$) and 10% (EC$_{10}$) of *Schistosoma mansoni* worms after 24 hours exposure *in vitro*.

Table 5.3 Percent mortality of adult *Schistosoma mansoni* treated with combinations of praziquantel and triclabendazole-sulphoxide.

Table 5.4 Dose response analysis of praziquantel, triclabendazole-sulphoxide and albendazole exposed to larval stages of *Haemonchus contortus* showing the EC$_{50}$, EC$_{25}$ and EC$_{10}$ values.

Table 5.5 Percent inhibition of L3 development of *Haemonchus contortus* treated with combinations of praziquantel and triclabendazole-sulphoxide.

Table 5.6 Concentration of praziquantel, triclabendazole-sulphoxide and albendazole required to inhibit 50%, 25% and 10% of *Giardia* adherence after 24 hours exposure *in vitro*.

Table 5.7 Inhibition of adherence of *Giardia duodenalis* trophozoites.
following exposure to combinations of praziquantel and triclabendazole-sulphoxide

Chapter 6

Table 6.1 Mean hepatic egg loads in eggs per gram of mice infected with *Schistosoma mansoni* and treated with Pzq (80mg/kg), Tcbz (120mg/kg), Pzq-Tcbz combination (80mg/kg +120mg/kg) and Pzq-Tcbz combination (250mg/kg +250mg/kg).

Table 6.2 Oogram pattern of mice infected with *Schistosoma mansoni* and treated with Pzq (80mg/kg), Tcbz (120mg/kg), Pzq-Tcbz combination (80mg/kg +120mg/kg) and Pzq-Tcbz combination (250mg/kg +250mg/kg).

Table 6.3 Worm burden of mice infected with *Schistosoma mansoni* and treated with Pzq (80mg/kg), Tcbz (120mg/kg), Pzq-Tcbz combination (80mg/kg +120mg/kg) and Pzq-Tcbz combination (250mg/kg +250mg/kg).

Chapter 7

Table 7.1 Sources of operational costs for the delivery of praziquantel treatments.

Table 7.2 Current availability of praziquantel (600mg) tablet and the current proportion of number with access to treatment.

Table 7.3 Demographic, epidemiology and economic data for Senegal.

Table 7.4 Distribution parameters of variables used in CostMod for the estimation of drug production price, operational costs and days lost due to schistosomiasis.

Table 7.5 Production costs and sale price of one 600mg tablet of praziquantel and triclabendazole in 2007.

Table 7.6 The mean costs to treat a child and an adult per year derived from Monte Carlo simulations.

Table 7.7 Global and Senegalese population distribution of children and adults from 2007 to 2030 in five year increments.
Table 7.8 Projections of the number of children and adults receiving praziquantel treatment from 2007 to 2030 in all countries. 124
Table 7.9 Projected drug costs of a combination of praziquantel-triclabendazole at different drug ratios compared to the drug costs for deliver praziquantel alone in 2013. 125
Table 7.10 Projected total costs for treatment programmes using a combination of praziquantel and triclabendazole at different drug ratios compared to the cost to deliver praziquantel alone in 2013. 125
Figure 7.11 The mean gross national income (GNI) saved per capita per year for ever US$1 spent, the total number of days lost despite treatment and the total number of days saved with praziquantel (Pzq) treatment at 70, 80, 90 and 100% efficacy and a combination of Pzq and triclabendazole (600mg-600mg). 126
Abbreviations

~ approximately
< less than
> greater than
% percent
°C degree celcius
Abz albendazole
b.w. body weight
Bz benzimidazole
CaCO₃ calcium carbonate
cm centimetres
DDI H₂O double deionised water
DMSO dimethylsulphoxide
DNA deoxyribonucleic acid
EC₅₀ concentration required to cause 50% worm mortality
EC₂₅ concentration required to cause 25% worm mortality
EC₁₀ concentration required to cause 10% worm mortality
EDTA ethylenediaminetetraacetic acid
EGTA ethylene glycol-bis(β-aminoethyl ether) N,N',N'-tetraacetic acid
et al. and others
FCS fetal calf serum
g gram
g unit of gravitational field
G gauge
HCl hydrochloric acid
hr hour
IMF International Monetary Fund
IRR internal rate of return
kg kilogram
L litre
µ (prefix) micro (10 x⁻⁶)
m (prefix) milli (10 x⁻³)
M mole
m million
x mag magnification
met metrifonate
µM micromoles
mg milligram
mL millilitres
mM millimoles
min minute
M.W. molecular weight
n (prefix) nano (10⁻⁹)
NaOH sodium hydroxide
NBCS newborn calf serum
NaCl sodium chloride
NPV net present value
Oxm oxamniquine
PBS phosphate buffered saline
pH minus log of hydrogen ion concentration
Pzq praziquantel
QIMR Queensland Institute of Medical Research
R&D research and development
rpm revolutions per minute
SD standard deviation
SE standard error
s second
Tcbz triclabendazole
Tcbz-Sx triclabendazole sulphoxide
Tcbz-Sp triclabendazole sulphone
US$ United States dollars
WHO World Health Organization
Wk week
Acknowledgements

Foremost, my sincere gratitude and appreciation to Professor Andrew Thompson for his vision, direction and trust. To Dr Simon Reid, for his faithful guidance, motivation and unconditional support. To Dr Wayne Best for his invaluable insights.

I would also like to acknowledge Dr Malcolm Jones, Dr Rob Dobson, Ms Mary Duke, Dr Dieter Palmer and Mr Jeff Mitchell for their direct intellectual and research contributions. I look forward to our further collaborations.

Especially to Dr Patrizia Washer, Professor Jim Reynolds and Mr Tim Morrison of the Murdoch University Commercialization Office for the opportunity to be part of such a dynamic enterprise. A special note of appreciation to the Intern analysts, Ms Erin McGuigan, Ms Sandra Depelsenaire and Mr Henry Lee for their infectious and unbridled enthusiasm.

Also to Mr Richard McCulloch, Ms Elizabeth Liu and Mr Tim Colwill of MurdochLink, and a special mention for Mr Rob Newman, Mr Matt Callahan, Mr Ian Callahan, Mr Robin Lees, Ms Debbie Harrison and Ms Susan Holland of the Murdoch Westscheme Enterprise Partnership Fund. Special thanks to Mark Gummer and Helen Cheeseman from AusBiotech, WA.

A special acknowledgement to Dr Howard Carr, for being an inspirational mentor.

To my partner, Tegan, for your boundless love.

To my best friend Jill, friendship and selflessness. Also for Jeff, and my god-son, little Jacob.

For my best mates, Amy, Cain, Adina, Kenneth, Emily, Niko, Jem, Eugene, Nicky, Shaun, Hui, Jimmy, Cindy, Sharon, Ondy and Adrian. To Carol, for your love and splendid cooking.

For all my friends and colleagues in the Division of Health Sciences, including Trish, Nevi, Miko, Annika, Peter, Yazid, Nyree, Tom, Bahman, Reza, Andrew and Joyce, Rebecca, Una, Stan, Cassie, Rob, Will, Moira, Ryan, Susannah, Natalie, Josh, Susannah Linda, Linda D, Jo, Scott and Hanna, Louise, Tanya, Mark, Jess, Olivier, Gail, Timmhay, Margaret, Simon and Toby.

Most of all, to my family, for their infinite love, support and strength.
Presentations

Oral

‘Evaluation of triclabendazole in combination with praziquantel for the treatment of mansonial schistosomiasis’
Postgraduate Seminar Programme
Division of Health Sciences, Murdoch University
June, 2007

‘Identification of novel targets and compounds for anti-schistosomal chemotherapy’
Postgraduate Seminar Programme
Division of Health Sciences, Murdoch University
June, 2004

Poster

‘Synergistic potential of praziquantel and triclabendazole in combinatorial chemotherapy’
Postgraduate Poster Day
Division of Health Sciences, Murdoch University
November, 2006

‘In vitro combinatorial effects of triclabendazole and praziquantel against Schistosoma mansoni’
Postgraduate Poster Day
Division of Health Sciences, Murdoch University
November, 2005

‘A novel compound for the treatment of schistosomiasis’
Postgraduate Poster Day
Division of Health Sciences, Murdoch University
November, 2004

Awards

‘Novel compounds for anti-schistosomal chemotherapy’
AusBiotech 2006 National Biotechnology Conference
Awarded Student Excellence Award, Western Australian State Winner
Sydney
September, 2006

‘Evaluation of the synergistic potential of a combination of triclabendazole and praziquantel for the treatment of systemic and gastrointestinal parasites’
Awarded Science, Technology and Economic Progress Forum Scholarship
ARC Research Network for a Secure Australia, University of Canberra
November, 2006
Nil sine labore