A Fuzzy Knowledge Map Framework for Knowledge Representation

Sebastian W. Khor, BSc Hons.

THIS THESIS IS PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF MURDOCH UNIVERSITY, WESTERN AUSTRALIA

YEAR OF SUBMISSION: 2006
I declare that this thesis is my own account of my research and contains as its main
content work which has not previously been submitted for a degree at any tertiary
education institution.

...............................
(SEBASTIAN W. KHROR)
Cognitive Maps (CMs) have shown promise as tools for modelling and simulation of knowledge in computers as representation of real objects, concepts, perceptions or events and their relations. This thesis examines the application of fuzzy theory to the expression of these relations, and investigates the development of a framework to better manage the operations of these relations.

The Fuzzy Cognitive Map (FCM) was introduced in 1986 but little progress has been made since. This is because of the difficulty of modifying or extending its reasoning mechanism from causality to relations other than causality, such as associative and deductive reasoning. The ability to express the complex relations between objects and concepts determines the usefulness of the maps. Structuring these concepts and relations in a model so that they can be consistently represented and quickly accessed and manipulated by a computer is the goal of knowledge representation. This forms the main motivation of this research.

In this thesis, a novel framework is proposed whereby single-antecedent fuzzy rules can be applied to a directed graph, and reasoning ability is extended to include non-causality. The framework provides a hierarchical structure where a graph in a higher layer represents knowledge at a high level of abstraction, and graphs in a lower layer represent the knowledge in more detail. The framework allows a modular design of knowledge representation and facilitates the creation of a more complex structure for modelling and reasoning.
The experiments conducted in this thesis show that the proposed framework is effective and useful for deriving inferences from input data, solving certain classification problems, and for prediction and decision-making.
I am deeply indebted to my supervisor Adjunct Associate Professor Dr. M. Shamim Khan for his valuable inputs and tireless encouragement throughout the course of this study.

Associate Professor Lance Chun Che Fung has been a tremendous source of inspiration for professionalism in my research.

My gratitude goes to Dr. Kevin Kok Wai Wong for his insights into and resourcefulness within my field of research.

My thanks and appreciation also goes to Dr. Liana Joy Christensen for her invaluable professional advice on the styles and various aspects of the presentation of this thesis.
Table of Contents

ABSTRACT ... i

ACKNOWLEDGMENTS ... iii

PUBLICATIONS .. xv

CHAPTER 1: INTRODUCTION ... 1

1.1 OVERVIEW .. 1

1.2 MOTIVATION ... 4

1.3 PRINCIPAL CONTRIBUTIONS ... 5

1.4 STRUCTURE OF THESIS .. 5

CHAPTER 2: LITERATURE REVIEW ... 9

2.1 OVERVIEW ... 9

2.2 COGNITIVE MAP ... 9

2.3 FUZZY COGNITIVE MAP ... 11

2.3.1 Structure and inference process of FCM ... 12

2.3.2 Limitations of FCM .. 17

2.3.2.1 Limitation on representation of relations .. 17

2.3.2.2 Inability to eliminate error propagation .. 19

2.3.2.3 The issues of transformation functions in continuous FCMs 24

2.3.2.4 Issues relating to FCM topology .. 27

2.4 RULE-BASED FUZZY COGNITIVE MAP ... 33

2.5 SUMMARY ... 34

CHAPTER 3: SINGLE-ANTECEDENT FUZZY RULE .. 39
3.1 OVERVIEW .. 39
3.2 PRELIMINARIES .. 42
3.3 FUZZY SYSTEMS .. 51
3.4 CONVENTIONAL APPROACHES TO FUZZY RULES CONSTRUCTION 55
 3.4.1 Grid Partitioning ... 55
 3.4.2 Tree Partitioning .. 56
 3.4.3 Scatter Partitioning ... 56
3.5 TRADITIONAL DEFUZZIFICATION METHODS ... 57
3.6 APPROXIMATION OF A FUNCTION .. 59
 3.6.1 Lagrange interpolation ... 60
 3.6.2 Case of a univariate polynomial .. 61
 3.6.3 Case of a simple multivariate polynomial .. 63
 3.6.4 Case of a multivariate polynomial .. 65
3.7 SUMMARY .. 67

CHAPTER 4: FUZZY KNOWLEDGE MAP .. 75
4.1 OVERVIEW .. 75
4.2 FUZZY KNOWLEDGE MAPS AND THE SINGLE-ANTECEDENT FUZZY RULE 76
4.3 CONSTRUCTION OF SINGLE-ANTECEDENT FUZZY RULES BASED ON POLICIES 81
 4.3.1 Construction of single-antecedent fuzzy rules based on Mamdani type
 inference for Diner’s tip .. 82
 4.3.2 Construction of single-antecedent fuzzy rules based on Takagi-Sugeno type
 inference for Diner’s tip ... 87
 4.3.2.1 Alternative 1: Using zero ordered function (constant) 88
 4.3.2.2 Alternative 2: Using linear function ... 88
 4.3.3 FKM operations .. 89
4.3.3.1 Aggregation operation ... 89
4.3.3.2 Weighting .. 90
4.3.3.3 Importance of contribution... 92
4.4 FUZZY RULE CONSTRUCTION BASED ON EXPERT KNOWLEDGE .. 93
4.5 FUZZY RULE CONSTRUCTION BASED ON DATA ... 98
 4.5.1 Single input single output (SISO) .. 98
 4.5.2 Multiple inputs single output (MISO) .. 99
4.6 EXPERIMENTS AND RESULTS .. 103
 4.6.1 Optimum corn yield by regulating four essential factors 103
 4.6.2 Wind speed estimation ... 107
 4.6.3 Simulation of human operation at a chemical plant 111
 4.6.4 Simulation of a nonlinear system .. 116
4.7 SUMMARY ... 121

CHAPTER 5: AN FKM KNOWLEDGE REPRESENTATION FRAMEWORK... 123

5.1 OVERVIEW ... 123
5.2 FKM MODULE .. 123
 5.2.1 Fuzzy OR module ... 124
 5.2.2 Fuzzy AND module ... 126
 5.2.3 Fuzzy XOR module ... 127
5.3 FKM FRAMEWORK .. 128
 5.3.1 Encapsulation ... 129
 5.3.2 Properties of an FKM module ... 130
 5.3.3 Time delay .. 131
5.4 EXPERIMENTS AND RESULTS ... 132
 5.4.1 Simulation of fixed point attractors 132
5.4.2 Simulation of a limit cycle attractor .. 134

5.4.3 Simulation of classification problem using FKM encapsulation technique
.. 136

5.4.2.1 Step 1: Partitioning ... 138

5.4.2.2 Step 2: Binning .. 140

5.4.2.3 Step 3: Identification of input cluster ... 142

5.4.2.4 Step 4: Construction of fuzzy membership function 142

5.4.2.5 Step 5: Construction of fuzzy rules ... 144

5.4.2.6 Step 6: Simulation and results ... 144

5.5 SUMMARY ... 145

CHAPTER 6: TECHNICAL ANALYSIS OF SHARE PRICES USING FKM
FRAMEWORK ... 148

6.1 OVERVIEW ... 148

6.2 SOME BACKGROUND ON TECHNICAL ANALYSIS 149

6.3 THE FKM FRAMEWORK FOR SHARE MARKET TECHNICAL ANALYSIS 152

6.3.1 Decision FKM module ... 153

6.3.2 Fuzzy Gradient FKM module ... 155

6.3.3 Momentum indicator .. 157

6.3.4 Relative strength index indicator ... 160

6.3.5 Moving averages ... 162

6.3.6 Bollinger band indicator ... 164

6.3.7 Stochastic indicator ... 166

6.4 THE EXPERIMENT AND RESULTS ... 169

6.5 SUMMARY ... 174

CHAPTER 7: CONCLUSION AND FUTURE DIRECTIONS 178
7.1 SUMMARY .. 178

7.2 FUTURE DIRECTIONS .. 180
LIST OF FIGURES

Figure 2-1: Cognitive Map of Japanese bombing of Pearl Harbour 11
Figure 2-2: A Cognitive Map showing the problem of imbalance 11
Figure 2-3: A simple example of a Fuzzy Cognitive Map .. 12
Figure 2-4: A hypothetical bivalent FCM version of the cognitive map of

 Figure 2-2 ... 15
Figure 2-5: A non-monotonic relationship ... 18
Figure 2-6: Relation between speed and distance run by an athlete 18
Figure 2-7: An example of an extended FCM ... 19
Figure 2-8: Effect of positive error in the computation of the total activation of

 an FCM node ... 22
Figure 2-9: Effect of negative error in the computation of the total activation of

 an FCM node ... 22
Figure 2-10: Sigmoid functions with gradient = (a) 2, (b) 1, and (c) 0.5 25
Figure 2-11: Hypothetical FCM model for testing the effects of using sigmoid

 transformation function ... 28
Figure 2-12: Hypothetical continuous FCM modified from Figure 2-6 for testing

 the effects of change in topology of the FCM ... 31
Figure 2-13: An example of RBFCM. RBs are the rule bases; A, B, C and D are

 the nodes ... 33
Figure 3-1: Examples of Pseudotrapezoidal shaped (PTS) membership functions:

 (a) trapezoidal shaped; (b) triangular shaped; and (c) Gaussian shaped 43
Figure 3-2: An example of a set of fuzzy sets, illustrating its completeness,

 consistency, and order .. 44
Figure 3-3: (a) convex: $A(t) \geq A(r)$, and (b) non-convex: $A(t) < A(r)$, fuzzy
sets. ... 47

Figure 3-4: Common flank. .. 48

Figure 3-5: Components of a fuzzy system. ... 53

Figure 3-6: Fuzzification example: Derivation of membership grade of a crisp
input x in the fuzzy set expressed by the trapezoidal membership function 53

Figure 3-7: Fuzzy inference of an input singleton x by two fuzzy rules to
produce a crisp output .. 63

Figure 3-8: Fuzzy inference of two independent input variables to produce a
crisp output. ... 64

Figure 4-1: An example of SISO FKM topology depicting the effect of a
distance run by an athlete on her speed. .. 77

Figure 4-2: Fuzzy rules and defuzzification process to derive a new state d_i of a
consequent node B from an input a_i of an antecedent node A. 78

Figure 4-3: Example of multiple antecedent nodes linked to a consequent node
(that is, multiple input single output or MISO). ... 79

Figure 4-4: The Standard Additive Model (SAM). ... 80

Figure 4-5: Partitions of the input space of the tipping example 83

Figure 4-6: Graph of tips for food with services kept constant at 0, 0.6, and 1 85

Figure 4-7: Application of appropriate sets of fuzzy rules to individual input
variables (a) service and (b) food. .. 87

Figure 4-8: Multiple input variables X_i mapped to the output variable Y_j via the
respective sets of fuzzy rules ... 91

Figure 4-9: An example of outputs of variable A at various values of another
variable B. .. 94
Figure 4-10: Grid partitioning of the input space $A \times B$, where A is the first antecedent node and B is the second antecedent node. ... 94

Figure 4-11: Example of an FKM using rule selector to select an appropriate set of fuzzy rules for transformation of an input dataset of 2 input variables 95

Figure 4-12: Partitioning of the input space $A \times B \times C$ into 3 partitions per dimension.. 96

Figure 4-13: Example FKM using rule selector to select an appropriate set of fuzzy rules for transformation of an input dataset with 3 input variables, A, B, C and D .. 97

Figure 4-14: An FKM model of a single input-single output (SISO)......................... 98

Figure 4-15: An FKM model of a MISO topology. .. 99

Figure 4-16: Fuzzy Knowledge Map of the four essential factors and corn yield 104

Figure 4-17: FKM predicted variations in corn crop yield for each of the four yield factors: Potassium (K), Phosphorus (P), Organic Matter (OM), and pH levels of soil (pH). .. 106

Figure 4-18: Wind height correction factors against wind heights for various ground elements. .. 109

Figure 4-19: FKM for estimating wind speed correction factor 109

Figure 4-20: Dual input single output FKM model for Polymerisation Chemical Plant.. 115

Figure 4-21: FKM model for non-linear system $y = (1 + x_1^{-2} + x_2^{-1.5})^2$ 119

Figure 5-1: FKM module for modelling fuzzy ŌR and fuzzy ĀND 124

Figure 5-2: An FKM module modelling a fuzzy ŌR ... 128

Figure 5-3: An example FKM of 2-layered configuration – the top layer contains one FKM module; the bottom layer contains three FKM modules. 128
Figure 5-4: Three-input fuzzy MAX FKM module with three inputs and one output ... 131
Figure 5-5: FKM modelling public health issues of a city 132
Figure 5-6: An FKM simulation of freeway conditions during rush hour 135
Figure 5-7: FKM for iris clustering – top layer .. 137
Figure 5-8: Example of the projections and counters in the bins for two input variables .. 139
Figure 5-9: Combination of bins .. 142
Figure 5-10: PTS membership functions approximation 143
Figure 5-11: Merging membership functions .. 144
Figure 6-1: The top layer (the Decision FKM module) of FKM framework for technical analysis of share market 154
Figure 6-2: Fuzzy Gradient FKM module to detect change in the direction of curve – ascending to descending or vice versa 156
Figure 6-3: FKM module for the simulation of momentum indicator 159
Figure 6-4: FKM module for simulation of Relative Strength Index (RSI) 161
Figure 6-5: The Moving Averages FKM module 163
Figure 6-6: FKM module for simulation of Bollinger Band Indicator 165
Figure 6-7: FKM module for the simulation of the Stochastic indicator 168
Figure 6-8: Price movements of Commonwealth Bank of Australia shares from 2 January 2002 to 31 December 2004, with BUY and SELL decisions 173
Figure 6-9: Price movements of Telstra Corporation Ltd. Shares from 2 January 2002 to 31 December 2004, with BUY and SELL decisions 174
LIST OF TABLES

TABLE 2-1: Results of simulating the FCM shown in Figure 2-11 using sigmoid function and with initial node states set at 0. .. 28

TABLE 2-2: Results of simulating the FCM shown in Figure 2-11 using sigmoid function and with initial node states set at 1. .. 29

TABLE 2-3: Results of simulating the FCM shown in Figure 2-11 using sigmoid function and with initial states set at 0 except E which is set to 1..... 29

TABLE 2-4: Results of simulating the FCM shown in Figure 2-11 using tanh function and with initial node states set at 0.. 30

TABLE 2-5: Results of simulating the FCM shown in Figure 2-11 using tanh function and with initial node states set at 1.. 30

TABLE 2-6: Results of simulating the FCM shown in Figure 2-12 using sigmoid function and with initial node states set at 0. .. 32

TABLE 2-7: Results of simulating the FCM shown in Figure 2-11 using sigmoid function and with initial node states set at 1. .. 32

TABLE 4-1: Findings of the four essential factors and their effects on corn yield. .. 104

TABLE 4-2: Fuzzy rules relating the four yield factors to corn crop yield: potassium, organic matter, phosphorus and pH level of soil......................... 105

TABLE 4-3: Comparison of estimated wind speed with actual at Murdoch University ... 111

TABLE 4-4: Cluster centres of input – output spaces of the operation of the chemical plant. .. 113

TABLE 4-5: Simulation results using FKM and the SY method............................. 114
TABLE 4-6: Cluster centres of input – output spaces of the non-linear function

\[y = (1 + x_1^{-2} + x_2^{-1.5})^2 \] ... 118

TABLE 4-7: Simulation results of FKM and SY methods on non-linear function

\[y = (1 + x_1^{-2} + x_2^{-1.5})^2 \] ... 118

TABLE 5-1: Connection matrix for FCM simulation of public health system 133
TABLE 5-2: Simulation results of public health issues .. 134
TABLE 5-3: Connection matrix for FCM simulation of traffic accident.............. 135
TABLE 5-4: Simulation results of freeway conditions during rush hour,
showing evidence of presence of a chaotic attractor................................. 136
TABLE 5-5: Iris dataset after binning and normalisation, consisting of three
classes, each with four input variables.. 141
TABLE 5-6: Bin values after eliminating less-than-highest values.................... 141
TABLE 5-7: Comparison of FKM with other techniques in clustering iris dataset.
.. 145
TABLE 6-1: Comparison of profit or loss from investments in 28 company
stocks for the 3-year period 2002-2004.. 171
TABLE 6-2: FKM simulation outputs for the five indicators relevant to the
Commonwealth Bank of Australia Ltd. for the period 16 July 2002 to 2
August 2002.. 172
PUBLICATIONS

Some contents of this thesis have been peer-reviewed and published. The chapters with the contents so peer-reviewed and published are listed below:

Chapter 2:

Relevant publications:

Chapter 3:

Relevant publications:

Chapter 4:

Relevant publications:

Chapter 5:

Relevant publications:

Chapter 6:

Relevant publications: