Selection for growth, muscling and fatness alters the maternal performance and intermediary metabolism of Merino ewes

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University

Mark Bradley Ferguson

B. Ag. Sci. (Hons) (University of Melbourne)

November 2012
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

..

Mark Bradley Ferguson
Abstract

There is growing interest in selectively breeding Merinos with higher growth and muscling and lower fatness. The effects of selection for these traits on ewe intermediary metabolism, body composition, reproduction and milk production and on lamb birthweight, survival and growth were studied in a series of experiments and analyses.

Ewes with higher genetic propensity for early growth had higher mature weight, reproductive rate, lamb birthweight, ewe milk production and lamb growth rate. Ewes with higher growth also had a higher circulating level of growth hormone during lactation.

Ewes with higher genetic propensity for muscling had a higher reproductive rate and produced lambs that were lighter at birth, but this did not result in lower lamb survival. Ewes with higher muscling maintained a higher condition score which may be at least partly attributed to a lower response to adrenaline at the level of the muscle in these higher muscled ewes. Similarly higher muscled ewes had lower growth hormone concentration in lactation which would result in lower mobilisation of tissues. In addition peripheral tissues were less responsive to insulin in high muscled ewes and blood glucose levels were also higher during the non-breeding state in high muscled ewes.

The genetic fatness of ewes was positively associated with lamb birthweight but only when nutrition was restricted suggesting that ewes with a higher genetic propensity for fatness can buffer lamb birthweight under periods of poor nutrition. Ewes with
higher genetic fatness had lower circulating growth hormone and a greater response to insulin providing potential mechanisms for the observed higher fatness. Furthermore, response to adrenaline at the level of liver was greater in ewes with higher fatness suggestive of a higher capacity for gluconeogenesis. The combined results of this work suggest that actively selecting Merino ewes to have higher growth, muscling and fatness is likely to have positive reproduction and therefore economic outcomes.
Table of Contents

Acknowledgements ... ix
List of Figures ... xi
List of Tables ... xii
List of Abbreviations .. xvi
Chapter 1 General Introduction ... 1
Chapter 2 Literature Review ... 5
 2.1 Ruminant energy metabolism ... 5
 2.1.1. Digestion of carbohydrate .. 5
 2.1.2. Gluconeogenesis .. 6
 2.1.3. Storage of glucose as glycogen .. 8
 2.1.4. Storage of energy as fat ... 10
 2.1.5. Fat depots ... 11
 2.1.6. Fat mobilisation ... 12
 2.1.7. Muscle energy metabolism ... 14
 2.2. Hormone regulation of growth and body composition .. 16
 2.2.1. Growth Hormone ... 16
 2.2.2. Insulin-like growth factor I .. 19
 2.2.3. Insulin .. 21
 2.2.4. Adrenaline .. 23
 2.2.5. Leptin .. 25
 2.3. Adaptation to pregnancy and lactation ... 26
 2.3.1. Accumulation of maternal tissues during early pregnancy 26
 2.3.2. Mobilisation of maternal tissues during late pregnancy .. 27
 2.3.3. Mobilisation of maternal tissues during lactation .. 28
 2.3.4. Re-building maternal tissues in late lactation and post weaning 30
 2.4. Measuring and breeding for changes to growth and body composition in sheep 31
 2.4.1. Measuring body composition using dual-energy x-ray absorptiometry 32
 2.4.2. Condition scoring ... 33
 2.4.3. GR tissue measurement for carcass grading .. 33
 2.4.4. C-site muscle and fat depth ... 34
 2.4.5. Australian Sheep Breeding Values ... 34
 2.5. The impact of ewe nutrition and selection strategy on body composition and maternal traits ... 36
4.3.1 Prediction of total body fat, lean and bone .. 87
4.3.2 Prediction of carcass traits from estimated breeding values 90
4.3.3 Carcass traits predicted by GR depth, condition score and liveweight 93
4.4 Discussion ... 94

Chapter 5 Merino ewe muscling and growth breeding values impact on lamb
birthweight and growth and on ewe fatness and milk production......................... 101
5.1 Introduction .. 101
5.2 Material and Methods .. 104
 5.2.1 Animals .. 104
 5.2.2 Sample analysis ... 106
 5.2.3 Body composition measurement ... 107
 5.2.4 Statistical Analysis .. 108
5.3 Results .. 109
 5.3.1 Ewe liveweight and condition score ... 109
 5.3.2 Ewe body composition ... 110
 5.3.3 Ewe milk production and quality ... 115
 5.3.4 Lamb birth and weaning weights .. 115
 5.3.5 Ewe hormones and metabolites ... 116
5.4 Discussion .. 119

Chapter 6 Lamb birthweight is buffered by maternal reserves of genetically fat ewes
during restricted nutrition ... 127
6.1 Introduction .. 127
6.2 Materials and Methods ... 129
 6.2.1 Experimental details .. 130
 6.2.2 Plasma sample analysis .. 132
 6.2.3 Body composition measurement .. 133
 6.2.4 Statistical Analysis .. 134
6.3 Results .. 135
 6.3.1 Ewe liveweight and condition score ... 135
 6.3.2 Body composition ... 137
 6.3.3 Lamb birthweight .. 142
 6.3.4 Lamb weight at weaning ... 144
 6.3.5 Ewe milk production and quality ... 145
 6.3.6 Hormones and metabolites .. 147
6.4 Discussion .. 152
Chapter 7 Merino ewes selected for rapid lean growth have higher circulating growth hormone

7.1 Introduction .. 166
7.2 Materials and Methods ... 168
 7.2.1 Animals ... 168
 7.2.2 Plasma sample collection ... 172
 7.2.3 Measurements .. 173
 7.2.4 Body composition measurement ... 176
 7.2.5 Statistical Analysis ... 177
7.3 Results ... 178
 7.3.1 Liveweight, fatness and wool measurements .. 178
 7.3.2 Plasma albumin, urea nitrogen, and non-esterified fatty acid 181
 7.3.3 Plasma glucose and lactate ... 181
 7.3.4 Growth hormone ... 182
 7.3.5 Insulin-like Growth Factor 1 .. 184
 7.3.6 Insulin .. 186
 7.3.7 Leptin ... 186
7.4 Discussion ... 187

Chapter 8 Lamb energy metabolism at birth is altered by maternal genotype and lamb gestation length .. 197

8.1 Introduction ... 197
8.2 Materials and Methods ... 200
 8.2.1 Animals ... 200
 8.2.2 Experimental procedures ... 201
 8.2.3 Sample analysis ... 203
 8.2.4 Statistical Analysis ... 204
8.3 Results ... 205
 8.3.1 Lamb metabolites at birth ... 205
 8.3.2 Ewe milk production and quality ... 206
 8.3.3 Lamb weights and gestation length .. 207
8.4 Discussion ... 207

Chapter 9 Ewes selected for high muscling mobilise less muscle glycogen and ewes selected for leanness release less glucose in response to adrenaline ... 213

9.1 Introduction ... 213
9.2 Materials and Methods ... 216
 9.2.1 Experimental Design .. 216
9.2.2 Animals .. 216
9.2.3 Preparation of animals .. 219
9.2.4 Experimental Procedure ... 219
9.2.5 Chemical Analysis ... 221
9.2.6 Calculation of the response to adrenaline ... 221
9.2.7 Statistical Analysis ... 222
9.3 Results ... 223
9.3.1 Liveweight and condition score ... 223
9.3.2 Basal substrate concentrations ... 223
9.3.3 Glucose response to adrenaline ... 225
9.3.4 Lactate response to adrenaline ... 229
9.3.5 NEFA response to adrenaline .. 234
9.4 Discussion ... 237

Chapter 10 Breeding for increased muscling and reduced fatness decreases the
response to insulin in reproducing Merino ewes .. 249
10.1 Introduction .. 249
10.2 Materials and Methods .. 251
10.2.1 Experimental Design .. 251
10.2.2 Animals .. 252
10.2.3 Preparation of animals .. 253
10.2.4 Experimental Procedure ... 253
10.2.5 Body composition measurement ... 255
10.2.6 Chemical Methods ... 256
10.2.7 Statistical Analysis ... 256
10.3 Results ... 257
10.3.1 Liveweight, condition score and whole body fat percentage 257
10.3.2 Effect of physiological state, liveweight and condition score on basal glucose ... 258
10.3.3 The effect of muscling group on SSGIR ... 259
10.3.4 The effect of HFAT on SSGIR .. 260
10.3.5 The effect of HWT on SSGIR ... 262
10.4 Discussion .. 264

Chapter 11 General Discussion ... 273
11.1 Growth ... 273
11.2 Muscling .. 275
11.3 Fatness ... 276
11.4 Associated changes in muscle metabolism ... 277
11.5 Future breeding direction in the Australian Merino 278
11.6 Reflection on methodologies used .. 279
12. Bibliography ... 281
Acknowledgements

This thesis is an accomplishment not just for me but for all of those who have helped and guided me along the way. As with the decade before, my enchanting wife Nisha has been there to guide me through the last six years of study and I am eternally grateful for her unwavering support and belief. During the journey I lost a great mentor in Dr Norm Adams and I am deeply saddened that Norm was not here to see the completion of this work but I will be forever grateful that I had the opportunity to have worked with, and learnt from him. He was a scholar of unquestionable integrity and brilliance and it was the greatest of pleasures to have studied under his guidance. I am fortunate that during the time this thesis was completed, three wonderful children graced our world. My beautiful daughter, Sitara Devi and gorgeous sons, Jai Nikhil and Kiran Shah together you have changed my world.

The work contained within this thesis was made possible by the generous support of many people. I was extremely fortunate to have the assistance, guidance and friendship from Mrs Jan Briegel and it is inconceivable to imagine the last six years without her. I would also particularly like to thank my supervisors Dr Graham Gardner and Dr Dave Pethick for their support, guidance, friendship and encouragement throughout. Never were there two men more dedicated to doing great science with practical outcomes for industry.

To Mum and Dad I thank you for creating possibilities and for a lifetime of love and support, to my brothers, I owe thanks to Brett for ending up at university in the first place and to Tim for an eternal passion to breed the perfect sheep. To Ian and Ganga thank you for your enduring support.
My industry collaborators were a very important part of this work and they not only made the sheep available for these studies but also provided considerable insight and knowledge that has helped shaped this thesis. They also provided many days of assistance and many opportunities to laugh. To Ian and Debbie Robertson, to Bill and Kay and Geoff and Emma Sandilands and to the board of Merinotech (WA) Limited, my sincerest thanks. Thanks also to Paul Daly for his many hours of help.

The opportunity to spend many evenings with Gus Rose was undoubtedly the highlight of my many trips south. To Kel Pearce, Johan Greeff, Geoff Cox, Steve Bell, and all of those who helped the DXA days pass, my thanks. I also thank Matt Wilmot, Hayley Norman, Valérie Kromm and Harriet Pugh for providing endless assistance and opportunities to laugh at various times throughout this process.

The animal house experiment described in the last four chapters of this thesis involved most of the research community in Perth, in addition to those already mentioned above. I would like to thank Kristy Glover, Margaret Blackberry, Beth Paganoni, Carolina Vinoles Gil, Peter McGilchrist, Sarah Bonny, Jim McMahon, Jen Clulow, Elizabeth Hulm, Paul Young, Shimin Liu, Mike Carthew, Phil Bullock, Rob Kelly, Mal Boyce, Paul Kenyon, Megan Chadwick, Di Mayberry, Andrew Toovey, Allan Rintoul, Dean Thomas, Roberta Bencini, Nic Wryde, Anthony Wryde and Ken Chong for making it possible. There were others too, too numerous to mention that made this possible.

Finally a thank you to my friend, mentor and boss Dr Andrew Thompson for his continued support. I am fortunate to have had the financial support provided by an Australian Post-graduate Award, the Sheep CRC, CSIRO Livestock Industries and Murdoch University.
List of Figures

Figure 3.1 Predicted response (±s.e.) of lamb survival to the Australian sheep breeding value (ASBV) for percentage increase in ewe hogget-age clean fleece weight (HCFW) for single and twin born lambs. .. 74

Figure 4.1 Relationships between Dual-energy X-ray Absorptiometry (DXA) determined tissue masses and weighed and chemically determined valus for a) total fat (carcass plus internal fat), b) carcass fat, c) carcass lean and d) carcass bone weight. Equations for lines of best fit are presented in Table 4.1. 89

Figure 5.1 Live weight a), and condition score b), of ewes across the experiment in relation to day 0 (7 February 2006). .. 110

Figure 5.2 The effect of eye muscle depth (EMD) Australian sheep breeding value (ASBV) on dual-energy X-ray absorptiometry (DXA) measured fat tissue (liveweight included in the model). .. 112

Figure 5.3 The effect of eye muscle depth (EMD) Australian sheep breeding value (ASBV) on dual-energy X-ray absorptiometry (DXA) measured lean tissue (corrected to constant liveweight). .. 113

Figure 6.1 Live weight a), and condition score b), of ewes fed high (black line filled in circles) or low (grey line open circles) nutrition across the experiment in relation to day 0 (13 February 2006). .. 136

Figure 6.2 The effect of Australian sheep breeding value (ASBV) for ewe fatness (HFAT) on DXA fat when measured at conception (– – –), pre-lambing (······), mid-lactation (— — —) and weaning (— —). Liveweight was included in the analysis. The relationship is significant (P<0.05) only at conception and post weaning measurements. .. 139

Figure 6.3 The effect of ewe fatness (HFAT) Australian sheep breeding value (ASBV) on lamb birthweight when ewes are managed on low or high nutrition during pregnancy.. 143

Figure 7.1 Australian Sheep Breeding Values (ASBV) at hogget age for subcutaneous fat depth (HFAT) and eye muscle depth (HEMD) of single bearing ewes used in the experiment (n=55). .. 170

Figure 7.2 Liveweight profile and experimental time line from day 0 (7 March 2007), arrows under the line represent blood sampling time points. .. 178

Figure 7.3 The relationship between plasma growth hormone concentration and the Australian sheep breeding value (ASBV) fat depth at hogget age (HFAT) at a hogget-weight ASBV (HWT) of 2, 5 or 8 when ewes were pregnant (a), lactating (b) and non-breeding (c). .. 183

Figure 9.1 Subcutaneous fat depth (HFAT) and eye-muscle depth (HEMD) Australian Sheep Breeding Value (ASBV), calculated 21 March 2008, for 8 ewes in each of the high, medium and low muscling groups. .. 218
Figure 9.2 Glucose concentration area under curve between 0 and 10 minutes (AUC10) relative to adrenaline dose in: a) pregnancy; b) lactation; and c) non-breeding ewes with breeding values for subcutaneous fat over the loin at hogget age (HFAT) of -0.5, 0.5 and 1.5mm. ... 228

Figure 9.3 Lactate concentration area under curve between 0 and 10 minutes (AUC10) relative to an adrenaline dose in: a) pregnancy; b) lactation; and c) non-breeding ewes from high, medium and low muscling groups. ... 231

Figure 9.4 Area under curve (AUC) of lactate concentration between 0 and 10 minutes relative to adrenaline challenges in: a) pregnant; b) lactating; and c) non-breeding ewes from high, medium and low muscling groups and with a range in hogget-age subcutaneous fat depth (HFAT) Australian sheep breeding value (ASBV). Values presented are averages across all levels of adrenaline challenge. .. 233

Figure 9.5 NEFA concentration area under curve between 0 and 10 minutes (AUC10) relative to adrenaline doses in pregnant, lactating and non-breeding ewes. 236

Figure 10.1 The effect of ewe muscle group on steady state glucose infusion rate (SSGIR; 50% glucose solution) at insulin infusion rates of 0.6 and 6.0mU/kg.min. Values are predicted means ± s.e. and are averaged across pregnant, lactating and non-breeding states. Muscle groups are not significantly different (P>0.05) at the 0.6 infusion rate but are all significantly different (P<0.05) at the 6.0 rate. .. 260

Figure 10.2 The effect of ewe fat breeding value (HFAT ASBV) on steady state glucose infusion rate (SSGIR; 50% glucose solution). Predicted means ± se at insulin infusion rates of 0.6 (grey line, open squares) and 6.0mU/kg.min (black line, closed squares) during (a) pregnant, (b) lactating, and (c) non-breeding. Symbols are adjusted raw data and each represent an experiment on a single sheep. ... 261

Figure 10.3 The effect of ewe weight breeding value (HWT ASBV) on steady state glucose infusion rate (SSGIR; 50% glucose solution). Predicted means ± s.e. at insulin infusion rates of 0.6 (grey line, open squares) and 6.0mU/kg.min (black line, closed symbols) during (a) pregnancy, (b) lactation, and (c) non-breeding. Closed and open symbols are adjusted raw data for 0.6 and 6.0mU/kg.min insulin infusion rates, each represents an experiment on a single sheep. ... 263

List of Tables

Table 3.1 Generalised linear regression model parameter estimates for the effect of birth type, ewe age, year, and ewe Australian sheep breeding value (ASBV) for hogget-age eye muscle depth (HEMD), weight (HWT) and clean fleece weight (HCFW) for the proportion of ewes having multiple lambs and the proportion of lambs surviving to weaning. Parameters for factors are differences compared with the reference level of ewe age = 2 years old, year = 2000 and in the case of lamb survival, birth type = single. .. 70
Table 3.2 F values for the effect of lamb birth type or rear type, sex, sire, ewe age at birth, year of birth, and ewe Australian sheep breeding values (ASBVs) for hogget-age eye muscle depth (HEMD), weight (HWT), clean fleece weight (HCFW), coefficient of variation of fibre diameter (HFDCV) and significant interactions between terms on lamb weight at birth and weaning.

Table 4.1 Regression coefficients (\pm s.e.), model F values and correlation coefficients for Dual-energy X-ray Absorptiometry (DXA) estimates of fat (DXA fat), lean tissue (DXA lean) and bone (DXA bone) compared with chemically determined and weighed measures of total fat, carcass fat, carcass lean and carcass bone. All terms are significant ($P<0.05$).

Table 4.2 Predicted means and regression coefficients (\pm s.e.), model F values and correlation coefficients for models of carcass traits predicted by 15 month old weight (WT EBV), depth of eye muscle (EMD EBV) and subcutaneous fat at the C site (FAT EBV) estimated breeding values. Coefficients are shown with and without carcass weight (CW) or liveweight (LW) included. Only significant terms ($P<0.05$) are included.

Table 4.3 Regression coefficients (\pm s.e.), model F values and correlation coefficients for models of carcass traits predicted by GR depth, condition score and liveweight. All terms are significant ($P<0.05$) unless marked otherwise.

Table 5.1 F values for the effect of time, the number of lambs born and reared (rear type) and breeding values for weight (HWT) and eye muscle depth (HEMD) at hogget age, on ewe liveweight and condition score.

Table 5.2 Liveweight, condition score, and total mass of fat, lean, and bone tissue measured by dual-energy x-ray absorptiometry (DXA) of ewes at conception, pre-lambing, lactation and post-weaning.

Table 5.3 F values for the effect of physiological state, breeding values for weight (HWT), subcutaneous fat depth (HFAT), eye muscle depth (HEMD) at hogget age, and interactions of physiological state with HWT, HFAT and HEMD on total mass of fat, lean, and bone tissue measured by dual-energy x-ray absorptiometry (DXA).

Table 5.4 F values for the effect of breeding values for weight (HWT), and eye muscle depth (HEMD) at hogget age, lamb birth type, lamb sex on lamb weights at birth and weaning and for the effect of breeding values for weight (HWT), and eye muscle depth (HEMD) at hogget age, time of milking and interaction between time of milking and HWT on ewe milk production.

Table 5.5 Plasma concentration of leptin, insulin-like growth hormone-1 (IGF-I), urea nitrogen and albumin in ewes during conception, mid-pregnancy, late-pregnancy, lactation, and post-weaning.

Table 5.6 F values for the effect of physiological state, breeding values for weight (HWT), subcutaneous fat depth (HFAT), eye muscle depth (HEMD) at hogget age, and interactions of physiological state with HWT and HEMD on ewe plasma concentrations of leptin, insulin-like growth factor-I (IGF-I), urea nitrogen and albumin.
Table 6.1 F values for the effect of ewe nutrition treatment, time, the number of lambs born and reared (rear type), and breeding values for fat (HFAT), eye muscle depth (HMD) and weight (HWT) at hogget age and significant interactions between terms on ewe liveweight and condition score. ... 137

Table 6.2 Total mass of fat, lean, and bone tissue measured by dual-energy x-ray absorptiometry (DXA) of ewes from low and high nutritional treatments at conception, pre-lambing, lactation and weaning. ... 138

Table 6.3 F values for the effect of nutrition treatment, physiological state, the number of lambs carried (birth type), Australian sheep breeding values for sub-cutaneous fat depth (HFAT), eye muscle depth (HMD), and weight (HWT) at hogget age, and interactions of physiological state with nutrition, HWT, HFAT and HEMD on total mass of fat, lean, and bone tissue measured by dual-energy x-ray absorptiometry (DXA). ... 140

Table 6.4 F values for the effect of ewe nutrition, lamb birth type, lamb sex, ewe breeding values for weight (HFAT), and eye muscle depth (HMD) at hogget age, and the significant interactions between terms on lamb weights at birth and weaning. 144

Table 6.5 F values for the effect of nutrition treatment, milking occasion (time), the number of lambs carried (birth type), breeding values for sub-cutaneous fat depth (HFAT) and eye muscle depth (HMD) at hogget age, and significant interactions between terms on ewe milk production, and the percentage of fat, protein and lactose in the milk. ... 146

Table 6.6 Plasma concentration of leptin, insulin-like growth factor-I (IGF-I), urea nitrogen and albumin from ewes in low and high nutrition treatments at conception, mid-pregnancy, pre-lambing, lactation and at lamb weaning. ... 149

Table 6.7 F values for the effect of nutrition treatment, physiological state, the number of lambs carried (birth type), breeding values for sub-cutaneous fat depth (HFAT) and eye muscle depth (HMD) at hogget age, and significant interactions between terms on plasma concentrations of leptin, insulin-like growth factor-I (IGF-I), albumin and urea nitrogen.. 151

Table 7.1 F values for the effect of day of experiment, breeding values for weight (HWT), sub-cutaneous fat depth (HFAT), eye muscle depth (HMD) at hogget age and condition score on ewe liveweight (LW), condition score (CS) and fat amount measured by Dual-energy x-ray absorptiometry (DXA fat). ... 179

Table 7.2 Ewe liveweight (LW), condition score (CS), and plasma concentrations of albumin, urea nitrogen (Urea N), glucose, non-esterified fatty acids (NEFA) and lactate across the breeding cycle. .. 180

Table 7.3 F values for the effect of physiological state, its interaction with time of sample, breeding values for weight (HWT), subcutaneous fat depth (HFAT) and eye muscle depth (HMD) at hogget age on ewe plasma concentrations of albumin, urea nitrogen (urea N), glucose, non-esterified fatty acids (NEFA) and lactate. ... 180

Table 7.4 Mean ± s.e. of plasma concentrations of growth hormone, insulin like growth-factor-I (IGF-I), insulin and leptin across a physiological states. ... 185
Table 7.5 F values for the effect of physiological state, its interaction with time of sample, breeding values for weight (HWT), subcutaneous fat depth (HFAT), eye muscle depth (HEMD) at hogget age, on ewe plasma concentrations of growth hormone, insulin-like growth factor-1 (IGF-I), insulin, and leptin. .. 185

Table 8.1 Concentrations of glucose, albumin, urea nitrogen, non-esterified fatty acids (NEFA) and lactate in lamb plasma collected 1 hour and 24 hours post birth. 206

Table 9.1 F values for the effect of physiological state, muscle group, ewe Australian sheep breeding values (ASBVs) for sub-cutaneous fat depth (HFAT) and weight (HWT), adrenaline challenge and condition score and significant interactions on basal glucose concentration, maximum glucose concentration, time to maximum glucose concentration and area under curve of glucose response between 0 and 10 minutes relative to administering adrenaline (AUC10). ... 226

Table 9.2 F values for the effect of physiological state, muscle group, ewe Australian sheep breeding values (ASBVs) for subcutaneous fat depth (HFAT) and weight (HWT), adrenaline challenge and condition score and significant interactions on basal lactate concentration, maximum lactate concentration, time to maximum lactate concentration and area under curve of lactate response between 0 and 10 minutes relative to administering adrenaline (AUC10). ... 230

Table 9.3 Time to reach maximum NEFA concentration (minutes) following an adrenaline challenge in Merino ewes of high, medium and low muscling during pregnancy, lactation or non-breeding. .. 234

Table 9.4 F values for the effect of physiological state, muscle group, ewe Australian sheep breeding values (ASBVs) for subcutaneous fat depth (HFAT) and weight (HWT), adrenaline challenge and condition score and significant interactions on basal non-esterified fatty acid (NEFA) concentration, maximum NEFA concentration, time to maximum NEFA concentration and area under curve of NEFA response between 0 and 10 minutes relative to administering adrenaline (AUC10). ... 235

Table 10.1 Predicted means of steady state glucose infusion rate (SSGIR) at insulin infusion rates (IIR) of 0.6 and 6.0mU/kg.min, basal blood glucose, liveweight, adjusted liveweight (adjusted for conceptus and wool weights where appropriate) and condition score across three physiological states. Average standard error of means across states are presented. ... 258

Table 10.2 F values and regression coefficients (\pm s.e.) for the effect of physiological state, muscle group, insulin infusion rate, hogget weight (HWT) and fat depth (HFAT), Australian sheep breeding values (ASBV) and condition score (CS) and liveweight (LW) on steady state glucose infusion rate (SSGIR; 50% glucose solution) and basal glucose. .. 259
List of Abbreviations

AUC10 Area under the concentration curve between 0 and 10 minutes relative to administering adrenaline
ASBV Australian Sheep Breeding Value
CS Condition Score
CW Carcase Weight
DXA Dual-energy X-ray absorptiometry
DXA fat Total fat tissue mass measured by dual-energy X-ray absorptiometry
DXA lean Total lean tissue mass measured by dual-energy X-ray absorptiometry
DXA bone Total bone mineral mass measured by dual-energy X-ray absorptiometry
EBV Estimated Breeding Value
EMD Eye Muscle Depth - The depth of the m. longissimus lumborum muscle at the C-site, defined as a point between the 12th and 13th ribs and 45mm from the dorsal midline
FAT Subcutaneous fat depth at the C-site, defined as a point between the 12th and 13th ribs and 45mm from the dorsal midline
HWT ASBV for weight at hogget age (15 months old)
GLUT1 Glucose transporter-1
GLUT4 Glucose transporter-4
HEMD ASBV for eye muscle depth at hogget age (15 months old)
HFAT ASBV for C-site fat depth at hogget age (15 months old)
HCFW ASBV for clean fleece weight at hogget age (15 months old)
HFD ASBV for mean fibre diameter at hogget age (15 months old)
HFDCV ASBV for the coefficient of variation of fibre diameter at hogget age (15 months old)
IGF-I Insulin-like growth factor -I
IIR Insulin infusion rate
LW Liveweight
NEFA Non-esterified fatty acid
SSGIR Steady-state glucose infusion rate
Urea N Plasma urea nitrogen concentration
VFA Volatile fatty acid