
http://researchrepository.murdoch.edu.au/12036/
Recent Advances in High-Voltage Direct-Current Power Transmission Systems

*Vassilios G. Agelidis **Georgios D. Demetriades *Nikolas Florentzou

* School of Electrical, Energy and Process Engineering
 Murdoch University, Perth, 6150, WA
 AUSTRALIA
 v.agelidis@murdoch.edu.au nflorentzou@ieee.org

**ABB AB Corporate Research
 SE-721 78 Västerås
 SWEDEN
 georgios.demetriades@se.abb.com

Abstract—The ever-increasing progress of high-voltage high-power fully-controlled semiconductor technology continues to have a significant impact on the development of advanced power electronic apparatus used to support optimised operations and efficient management of electrical grids, which in many cases, are fully or partially deregulated networks. Developments advance both the high-voltage direct-current (HVDC) power transmission and the flexible alternating current transmission system (FACTS) technologies. In this paper, an overview of the recent advances in the area of voltage-source converter (VSC) HVDC technology is provided. Selected key multilevel converter topologies are presented. Control and modelling methods are discussed. A list of VSC-based HVDC installations worldwide is provided. It is confirmed that the continuous development of power electronics presents cost-effective opportunities for the utilities to exploit and HVDC remains a key technology. In particular, VSC-HVDC can address not only conventional network issues such as bulk power transmission, asynchronous network interconnections, back-to-back AC system linking and voltage/stability support to mention a few, but also niche markets such as the integration of large scale renewable energy sources with the grid.

I. INTRODUCTION

High-voltage direct-current (HVDC) power transmission systems and technologies associated with the flexible alternating current transmission system (FACTS) continue to advance as they make their way to commercial applications [1]-[25]. Both HVDC and FACTS systems underwent research and development for many years and they were based initially on thyristor technology and more recently on fully-controlled semiconductors and voltage-source converter (VSC) topologies [1]-[25]. The ever increasing penetration of the power electronics technologies into the power systems is mainly due to the continuous progress of the high-voltage high-power fully-controlled semiconductors [26]-[31].

The fully-controlled semiconductor devices available today for high-voltage high-power converters can be either thyristors or transistors. These devices can be used for a VSC with pulse-width modulation (PWM), operating at frequencies higher than the line frequency (Table 1) and are self-commutated via a gate pulse.

Typically, it is desirable that a VSC application generates PWM waveforms of higher frequency when compared to the thyristor-based systems. However, the operating frequency of these devices is also determined by the losses and the design of the heat sink, both of which are related to the power through the component. Switching losses, directly linked to high frequency PWM operation, are one of the most serious issues that need to be dealt with in VSC-based applications.

HVDC and FACTS systems are important technologies, supporting in their own way the modern power systems, which in many cases are fully partially deregulated in several countries [32]. In the near future, even higher integration of electrical grids and market driven developments are expected as, for instance, countries in the Middle-East, China, India and South America require infrastructure to power their growth [33]-[37].

Today, there are more than 92 HVDC projects worldwide transmitting more than 75GW of power employing two distinct technologies as follows [38]:

1. Line-commutated current-source converters (CSCs) using thyristors (Fig. 1, CSC-HVDC). This technology is well established for high power, typically around 1000MW, with the largest project being the Itaipu system in Brazil at 6300MW power level [38].

2. Forced-commutated voltage-source converters (VSCs) using gate-turn-off thyristors (GTOs) or in most industrial cases insulated gate bipolar transistors (IGBTs) (Fig. 2, VSC-HVDC). It is well established technology for medium power levels thus far, with the largest size project being the latest one named Estlink at 350MW level (Table 2) [38], [42]-[52].

CSC-HVDC systems represent mature technology today (i.e., also referred to as “classic” HVDC) and recently, there have been a number of significant advances [39]-[41]. It is beyond the scope of this paper to discuss developments associated with the CSC-HVDC which are well-documented [38]-[41].

Table 1: Summary of fully-controlled high-power semiconductors.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Type</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBT</td>
<td>Transistor</td>
<td>Insulated Gate Bipolar Transistor</td>
</tr>
<tr>
<td>EGTR</td>
<td>Transistor</td>
<td>Injection Enhanced Gate Transistor</td>
</tr>
<tr>
<td>GTO</td>
<td>Thyristor</td>
<td>Gate Turn-off Thyristor</td>
</tr>
<tr>
<td>IGCT</td>
<td>Thyristor</td>
<td>Integrated Gate Commutated Thyristor</td>
</tr>
<tr>
<td>GCT</td>
<td>Thyristor</td>
<td>Gate Commutated Turn-off Thyristor</td>
</tr>
</tbody>
</table>

Fig. 1: HVDC system based on CSC technology with thyristors.
On the other hand, VSC-HVDC systems (i.e., also referred to as HVDC Light® [38]) represent recent developments in the area of DC power transmission technology. Experience with VSC-HVDC at commercial level scatters over the last ten years [38], [42]-[51]. The breakthrough was made when the world’s first VSC-based PWM controlled HVDC system using IGBTs was installed in March 1997 by ABB (Hellisjon project, Sweden, 3MW, 10km distance, ±10kV, the only project where overhead lines were used) [38], [42], [43]. Since then, more VSC-HVDC systems have been installed worldwide (Table 2) [38], [45]-[51]. Other relevant and important developments that assisted the success of VSC-HVDC (i.e., HVDC Light®), which are worth mentioning involve advanced extruded DC cable technology [53]-[54].

The objective of this paper is to provide an overview of the HVDC technologies associated with VSC-based systems including converter topologies. Modelling and control are another area of importance and recent contributions presented in the technical literature are analysed briefly. Finally, emerging applications of VSC-HVDC systems and multiterminal DC configurations that can be used to interconnect large scale wind energy sources with the grid are discussed.

The paper is organised in the following way. Section II provides a summary of the CSC-HVDC system configurations, which also apply, with some modifications, to the VSC-HVDC ones as well. Section III discusses in detail the fundamental concepts associated with the VSC-HVDC system. The various multilevel converter topologies suitable for VSC-HVDC are briefly presented in Section IV. Modelling and control issues are analysed in Section V. Emerging applications involving the integration of large scale wind energy systems are presented in Section VI. The various worldwide VSC-HVDC installations are summarised in Section VII. Finally, the paper concludes in Section VIII.

II. HVDC SYSTEM CONFIGURATIONS

Dependent upon the function and location of the converter stations, various configurations of HVDC systems can be identified. The ones drawn in this section involve CSC-HVDC configurations but similar types of configurations exist for VSC-HVDC with or without transformers depending upon the project in question.

A. Back-to-back HVDC system.

In this case, the two converter stations are located at the same site and there is no transmission of power with a DC link over a long distance. A block diagram of a back-to-back CSC-HVDC system with 12-pulse converters is shown in Fig. 3. The two AC systems interconnected may have the same or different frequency (asynchronous interconnection).

B. Monopolar HVDC system.

In this configuration, two converters are used which are separated by a single pole line and a positive or a negative DC voltage is used. Many of the cable transmissions with submarine connections use monopolar system. The ground is used to return current. Fig. 4 shows a block diagram of a monopolar CSC-HVDC system with 12-pulse converters.

C. Bipolar HVDC system.

This is the most commonly used configuration of a CSC-HVDC system in applications where overhead lines are used to transmit power. In fact, the bipolar system is two monopolar systems.

The advantage of such system is that one pole can continue to transmit power in the case that the other one is out of service for whatever reason. In other words, each system can operate on its own as an independent system with the earth return. Since one is positive and one is negative, in case that both poles have equal currents, the ground current is zero theoretically, or in practice within a 1% difference. The 12-pulse based bipolar CSC-HVDC system is depicted in Fig. 5.

D. Multi-terminal HVDC system.

In this configuration there are more than two sets of converters like the bipolar version. In this case, converters 1 and 3 can operate as rectifiers while converter 2 operates as an inverter. Working in this order, converter 2 can operate as a rectifier and converters 1 and 3 as inverters. By mechanically switching the connections of a given converter other combinations can be achieved. A multi-terminal CSC-HVDC system with 12-pulse converters per pole is shown in Fig. 6.
III. VSC-HVDC FUNDAMENTAL CONCEPTS

A basic VSC-HVDC system comprises of two converter stations built with VSC topologies (Fig. 2). The simplest VSC topology is the conventional two-level three-phase bridge shown in Fig. 7.

Typically, many series connected IGBTs are used for each semiconductor shown (Fig. 7) in order to deliver a higher blocking voltage capability for the converter and therefore increase the DC bus voltage level of the HVDC system. It should be noted that an antiparallel diode is also needed in order to ensure the four-quadrant operation of the converter. The DC bus capacitor provides the required storage of the energy so that the power flow can be controlled and offers filtering for the DC harmonics. The VSC-HVDC system can be built with many VSC topologies and the key ones are presented in Section IV.

The converter is typically controlled through sinusoidal PWM (SPWM) and the harmonics are directly associated with the switching frequency of each converter leg. Fig. 8 presents the basic waveforms associated with SPWM and the line-to-neutral voltage waveform of the two-level converter (Fig. 7). Each phase-leg of the converter is connected through a reactor to the AC system. Filters are also included on the AC side to further reduce the harmonic content flowing into the AC system.

A generalised two AC voltage sources connected via a reactor is shown in Fig. 9. Fig. 10 shows the relative location of the vectors of the two AC quantities and their relationship through the voltage drop across the line reactor (Fig. 9). One vector is generated by the VSC and the other one is the vector of the AC system. At the fundamental frequency the active and reactive powers are defined by the following relationships, assuming the reactor between the converter and the AC system is ideal (i.e. lossless):

\[P = V_s \cos \delta \cdot V_r \]

\[Q = \frac{V_s \sin \delta}{X_L} \cdot V_r \]

where \(\delta \) is the phase angle between the voltage vectors \(V_s \) (sending) and \(V_r \) (receiving) at the fundamental frequency.

Fig. 8: Two-level sinusoidal PWM method: reference (sinusoidal) and carrier (triangular) signals and line-to-neutral voltage waveform.

Fig. 9: Interconnection of two AC voltage sources through a lossless reactor.

Fig. 10: Vector diagram of power transmission based on two AC voltage sources interconnected through a lossless reactor.

Fig. 11: Active-reactive (PQ) locus diagram of VSC-based power transmission system.

Fig. 11 shows the entire active-reactive power area where the VSC can be operated with the 1.0 p.u. value being the MVA rating of each converter.

The use of VSC as opposed to a line commutated CSC offers the following advantages:

- Avoidance of commutation failures due to disturbances in the AC network.
- Independent control of the reactive and active power consumed or generated by the converter.
• Possibility to connect the VSC-HVDC system to a “weak” AC network or even to one where no generation source is available and naturally the short-circuit level is very low.
• Faster dynamic response due to higher (PWM) than the fundamental switching frequency (phase-controlled) operation, which further results in reduced need for filtering and hence smaller filter size.
• No need of transformers for the conversion process.

IV. MULTILEVEL VSC TOPOLOGIES FOR HVDC

In this Section, different selected VSC topologies suitable for the implementation of a VSC-HVDC system are discussed. Multilevel converters extend the well-known advantages of low and medium power PWM converter technology into the high power applications suitable for high-voltage high-power adjustable speed drives and large converters for power systems through FACTS and VSC-based HVDC power transmission [55]-[62].

There are numerous multilevel solid-state converter topologies reported in the technical literature [57]. However, there are two distinct topologies, namely, the diode-clamped neutral-point-clamped (NPC) converter (Fig. 12) [55] and the flying capacitor (FC) VSC topology (Fig. 13) [58]. For clarity purposes, three- and five-level PWM voltage waveforms on the line-to-neutral basis are shown in Figs. 14 and 15 respectively.

Fig. 12: Three-level 3-phase neutral-point-clamped (NPC-diode clamped) VSC.

Fig. 13: Five-level flying capacitor VSC phase-leg topology.

Fig. 14: Three-level PWM line-to-neutral voltage waveform.

Fig. 15: Five-level PWM line-to-neutral voltage waveform.

Contributions for selected topologies which can be used to build an HVDC system were made in numerous technical papers and are not limited to [63]-[77]. Specifically, PWM controlled HVDC concepts based on the three-phase two-level converter were reported using GTO’s in [63]. A similar system was developed and reported using IGBTs and digital signal processing (DSP) control in [64]. Using modular approach and phase-shifted PWM concepts a number of advantages can be gained as far as the harmonic performance of the overall VSC-HVDC system are concerned [65], [66]. In [67], the diode-clamped NPC topology was studied for an HVDC system in its three-level version (Fig. 12). The benefits of using such a system were brought out; however the converter has significant challenges with voltage balancing across the various DC bus capacitors, in addition to the uneven loss distribution between the devices. A VSC-HVDC system based on the five-level PWM flying capacitor (FC) topology was studied in [68] (Fig. 13). The three basic topologies, namely, the two-level converter (Fig. 7), the NPC converter (Fig. 12) and the FC converter (Fig. 13) were compared for HVDC system in [69]. In [70], a hybrid system is proposed as a way to exploit the benefits of both technologies, i.e., the CSC-based HVDC and VSC-based static compensator (STATCOM) advantages used as a static compensator for the connection of two AC systems when there is no synchronous generation to a main grid. The proposed system is shown in Fig. 16. The system studied through simulations combines the robust performance and relatively lower capital cost and operating loss through the low frequency switching with the fast dynamic response of a PWM controlled VSC STATCOM which is sized at a lot lower power level when compared with the main CSC system. The multilevel FC topology and its operation under fault AC conditions was discussed in [71]-[72]. The FC VSC-based HVDC controlled with selective harmonic elimination (SHE) and a hybrid SHE and SPWM strategy were presented in [73] and [74] respectively. VSC transmission topologies based on the multi-level current/voltage reinjection concept reported in [75]-[77].
V. MODELLING AND CONTROL

On the modelling and control area associated with VSC-HVDC systems, there have been several technical papers as well and such information is not limited to [78]-[82]. In [78], it is shown that including a back-to-back VSC-HVDC system at the mid-point of a transmission line can increase the transmissibility of the line by a factor of 1.68. In [79], it is shown that the VSC-HVDC system can be operated as a static synchronous series compensator (SSSC). Using equivalent continuous-time state-space average modelling a DC bus voltage control system was presented in [80]. Recently, a dynamic model for a back-to-back HVDC system based on the three-level NPC topology was presented in [81]. Finally, in [82] a control system for the VSC-HVDC during island operation and under three-phase balanced faults was investigated and it has been found that the current limit of the converters has a significant influence on the dynamic response of the system.

VI. EMERGING APPLICATIONS

VSC-HVDC can be effectively used in a number of key areas as follows [38], [42]:
- Small, isolated remote loads.
- Power supply to islands.
- Infeed to city centres.
- Remote small-scale generation.
- Off-shore generation and deep sea crossings.
- Multi-terminal systems.

As a way of example, a five-terminal VSC-HVDC [89] and a multi-terminal configuration [83] are shown in Figs. 17 and 18 respectively.

From the technology point of view, wind farms and off-shore wind farms in particular are well-suited for VSC-HVDC application [84], [85]. The discussion continues as to if the DC is more cost-effective to the AC counterpart as a means to connect wind farms with the main grid [86].

Multi-terminal DC systems have been studied for wind farms and work is reported in [87]-[89]. Fig. 18 presents a scenario of three wind generators connected into a multi-terminal DC grid via a VSC. A single VSC-HVDC transmits the power and/or connects the entire farm with the grid.

Finally, the use of doubly-fed induction generators (DFIGs) for wind farm development and the relation to an HVDC interconnection and coordinated control is one of the most current research developments in the field [90], [91].

VII. VSC-HVDC WORLDWIDE INSTALLATIONS

In this section, the various projects worldwide where VSC-based HVDC systems have been successfully exploited are discussed. The projects have been designed and delivered by ABB [38] and are summarised in Table 2. They involve back-to-back systems (Eagle Pass, USA), wind energy applications (Götland, Sweden), two controlled asynchronous connections for trading of electricity (Murray link and Directlink, Australia), power enhancement (CrossSound link, USA) and the powering of an off-shore platform (Troll A, Norway). It should be noted that the DC voltage has reached ±150kV and the largest system is at 350MW, making the VSC-HVDC a well established technology in the medium power levels. Moreover, the experiences gained from the projects so far ensure that VSC-HVDC technology remains competitive and assists utilities worldwide in order to deliver efficient, reliable, economic, and where possible renewable energy to customers irrespective of how challenging the applications are.
VIII. CONCLUSIONS

In this paper, recent advances of the VSC-HVDC technology are presented. The development of high-voltage high-power semiconductors has assisted utilities to exploit the benefits of the four-quadrant static converter interlinking two AC systems through HVDC. The key benefits include independent control of active and reactive power through the PWM control of the converter, fast dynamic response and possibility to connect AC islands with the grid where no synchronous generation exists. It is confirmed that developments associated with VSC-HVDC technology have delivered systems at voltage levels up to ±150kV and power levels up to 350MW. VSC-HVDC undoubtedly will continue to provide solutions for many challenging issues associated with the modern deregulated power systems where installations and associated business decisions necessitate proven technology.

IX. ACKNOWLEDGEMENT

The authors wish to acknowledge that this paper has also been presented as an invited keynote address at the Bi-Annual Conference of the Chinese Power Electronics Society in Xi’an, China, on 24 September 2006.

X. REFERENCES

Table 2: Summary of worldwide VSC-HVDC projects and their basic parameters [38].

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Commissioning year</th>
<th>Power rating</th>
<th>Number of circuits</th>
<th>AC voltage</th>
<th>DC voltage</th>
<th>Length of DC cables</th>
<th>Comments and reasons for choosing VSC-HVDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillsjön, Sweden</td>
<td>1997</td>
<td>3 MW</td>
<td>1</td>
<td>10 kV (both ends)</td>
<td>± 10 kV</td>
<td>10 km Overhead lines</td>
<td>Test transmission. Only project where overhead lines were used.</td>
</tr>
<tr>
<td>Gotland HVDC light, Sweden</td>
<td>1999</td>
<td>50 MW</td>
<td>1</td>
<td>80 kV (both ends)</td>
<td>± 80 kV</td>
<td>2 × 70 km Submarine cables</td>
<td>Wind power (voltage support). Easy to get permission for underground cables.</td>
</tr>
<tr>
<td>Eagle Pass, USA</td>
<td>2000</td>
<td>36 MW</td>
<td>1</td>
<td>132 kV (both sides)</td>
<td>± 15.9 kV</td>
<td></td>
<td>Controlled asynchronous connection for trading. Voltage control. Back-to-back HVDC light station</td>
</tr>
<tr>
<td>Tjacoborg, Denmark</td>
<td>2000</td>
<td>8 MVA 7.2 MW</td>
<td>1</td>
<td>10.5 kV (both sides)</td>
<td>± 9 kV</td>
<td>4 × 4.3 km Submarine cables</td>
<td>Wind power. Demonstration project.</td>
</tr>
<tr>
<td>DirectLink, Australia</td>
<td>2000</td>
<td>180 MW</td>
<td>3</td>
<td>110 kV (Bangdora), 132 kV (Mullumbimby)</td>
<td>± 80 kV</td>
<td>6 × 59 km Underground cable</td>
<td>Controlled asynchronous connection for trading. Easy to get permission for underground cables.</td>
</tr>
<tr>
<td>MurrayLink, Australia</td>
<td>2002</td>
<td>220 MW</td>
<td>1</td>
<td>132 kV (Berri), 220 kV (Red Cliff)</td>
<td>± 150 kV</td>
<td>2 × 180 km Underground cable</td>
<td>Controlled asynchronous connection for trading. Easy to get permission for underground cables.</td>
</tr>
<tr>
<td>CrossSound, USA</td>
<td>2002</td>
<td>330 MW</td>
<td>1</td>
<td>345 kV (New Heaven), 138 kV (Shoreham)</td>
<td>± 150 kV</td>
<td>2 × 40 km Submarine cables</td>
<td>Controlled connections for power enhance. Submarine cables.</td>
</tr>
<tr>
<td>Troll offshore, Norway</td>
<td>2005</td>
<td>84 MW</td>
<td>2</td>
<td>132 kV (Kollsnes), 56 kV (Troll)</td>
<td>± 60 kV</td>
<td>4 × 70 km Submarine cables</td>
<td>Environment, long submarine cable distance, compactness of converter on platform.</td>
</tr>
<tr>
<td>Estlink, Estonia, Finland</td>
<td>2006</td>
<td>350 MW</td>
<td>1</td>
<td>330 kV (Estonia), 400 kV (Finland)</td>
<td>± 150 kV</td>
<td>2 × 31 km Underground 2 × 74 km Submarine</td>
<td>Length of land cable, sea crossing and non-synchronous AC systems.</td>
</tr>
<tr>
<td>Valhall offshore, Norway</td>
<td>2009</td>
<td>78 MW</td>
<td>1</td>
<td>300 kV (Lista), 11 kV (Valhall)</td>
<td>150 kV</td>
<td>292 km Submarine cables</td>
<td>Reduce cost and improve operation efficiency of the field. Minimize emission of green house gases.</td>
</tr>
</tbody>
</table>

