
http://researchrepository.murdoch.edu.au/11303/

Copyright: © 2012 Elsevier Inc.
It is posted here for your personal use. No further distribution is permitted.
Synthesis and anti-microbial potencies of 1-(2-hydroxyethyl)-3-alkylimidazolium chloride ionic liquids: Microbial viabilities at different ionic liquids concentrations

M. Ismail Hossain a,^, Mohanad El-Harbawi b,#, Noorjahan Banu Mohamed Alitheen c, Yousr Abdulhadi Noaman c, Jean-Marc Lévêque d, Chun-Yang Yin e,*

a Chemical Engineering Department, Universiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar, Tronoh, Perak, Malaysia.

b Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Kingdom of Saudi Arabia.

c Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.

d Laboratoire de Chimie Moléculaire et Environnement, Université de Savoie, Campus Technolac, 73376 Le Bourget du Lac Cedex, France.

e School of Chemical and Mathematical Sciences, Murdoch University, Murdoch, 6150 WA, Australia.

^ Email address: ismchem@cu.ac.bd

Email address: mohanad_75@yahoo.com

*Corresponding author. Tel.: +614 3140 9216; Fax: +618 9360 6452; Email addresses: c.yin@murdoch.edu.au; vinyang@streamyx.com
Abstract

Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC_n][Cl]; (n = 0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of *Escherichia coli*, *Aeromonas hydrophila*, *Listeria monocytogenes* and *Salmonella enterica* as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC_{50} values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM, respectively. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to deter microbial growth and activity.

Keywords: Alkylimidazolium chloride ionic liquids, inhibition potential, human pathogens, microbial growth and viability.

1. Introduction

Room temperature ionic liquids (ILs) are generally salts that bear an organic cation, obtained by the extension of a valence of a nitrogen, phosphorus or sulphur atom, and an organic or inorganic anion with melting points below or not far above ambient temperatures. They are in demand as substitutes to conventional molecular solvents due to their high chemical and thermal
stabilities as well as their very low flammability and vapour pressures. ILs are generally excellent solvents for a wide range of inorganic and organic materials (Fuller et al., 1997; Suarez et al., 1998; Brennecke and Maginn, 2011; Gathergood et al., 2004; Couling et al., 2006; Hossain et al., 2011a). Despite their good industrial applicability, the high solubility of some ILs in water raises concerns as they may be potentially toxic to aquatic organisms. Correspondingly, IL researchers have focused their attention on determining IL toxicities on soil/aquatic-based organisms such as earthworms (Luo et al., 2009; Li et al., 2010), *Selenastrum capricornutum* (Cho et al., 2007) and *Vibrio fischeri* (Docherty and Kulpa, 2005) in order to afford a better understanding of their impact to the surrounding environment.

The notoriety of ILs as being toxic to aquatic organisms is, nonetheless, partially negated by the observation that their toxicities can be readily harnessed to deter microbial growth and activity. This dichotomy of the drawbacks and plus points affords IL researchers a rather intriguing perspective as can be seen for different applications. Bacteria are essentially a good foundation to inspect IL toxicity as they have short generation times (Pham et al., 2010). Previous studies concluded that some pyridinium, imidazolium and quaternary ammonium ILs show toxicity towards a range of bacteria (Pernak et al., 2003, Pernak et al., 2004; Roslonkiewicz et al., 2005). It has been suggested that some quaternary ammonium compounds can even be considered for disinfection of medical equipment (Demberelnyamba et al., 2004). In this regard, Saadeh et al. (2009) synthesized tetrabutylammonium-based ILs and reported that they were effective against Gram-positive and Gram-negative bacteria. We had previously established that hydroxylammonium-based ILs exhibited toxicity to a wide spectrum of human pathogens and in some cases, showed inhibition effectiveness comparable to a standard
antibiotic, gentamicin (Hossain et al., 2011b). On this basis, it is postulated that hydroxyl-
functionalized imidazolium ILs may also exhibit anti-microbial characteristics.

The aims of the present study are therefore to synthesize and characterize a series of new 1-
(2-hydroxyethyl)-3-alkylimidazolium chloride ILs and to investigate their anti-microbial
activities, particularly in the context of microbial viabilities as a function of IL concentrations.

Four types of human pathogens, namely, *Escherichia coli*, *Aeromonas hydrophila*, *Listeria
monocytogenes* and *Salmonella enterica* were selected to assess the potential toxicities of these
ILs and their effectiveness as anti-microbial agents, which indirectly reflected their aquatic
toxicities.

2. Materials and Methods

2.1. Synthesis of 1-(2-hydroxyethyl)-3-alkylimidazolium ILs

All the ILs were synthesized according to previous reported methods (Branco et al., 2002;
Yeon et al., 2005; Hossain et al., 2011b). By way of example, ~0.14 mol of 1-methylimidazole
(Sigma-Aldrich, USA, AR grade, 99%) and 0.2 mol of 2-chloroethanol (Merck KGaA,
Darmstadt, Germany, synthesis grade) were added to a round-bottomed flask containing 200 mL
of acetonitrile (Sigma-Aldrich, 98%). After fitting a reflux condenser, the flask was maintained
at 343 K under nitrogen for 24 h with magnetic stirring. The reaction progress was monitored by
a thin layer chromatography using aluminium sheets coated with silica gel, with methanol as the
mobile phase. This product was kept at ~353 K under vacuum (1 Pa) overnight to remove
volatiles and moisture. An analogous procedure was used to synthesize the other two ILs, using
0.11 mol imidazole (Merck, synthesis grade) and 0.6 mol 1-butylimidazole (Merck, synthesis grade). The reactions employed and the structures of the ILs so obtained are represented in Fig. 1. All in all, three ILs were synthesized and characterized: 1-(2-hydroxylethyl)imidazolium chloride, [2OHim][Cl], 1-(2-hydroxylethyl)-3-methylimidazolium chloride, [2OHimC][Cl] and 1-(2-hydroxylethyl)-3-butylimidazolium chloride, [2OHimC₄][Cl]. [2OHimC][Cl] was obtained as a solid-like IL while the other two ILs were in liquid form.

2.2. Characterization

The synthesized ILs were characterized using the Fourier-transform infrared (FTIR) spectroscopy (Shimadzu 8400S), ¹H-nuclear magnetic resonance (NMR) spectroscopy (Bruker Avance, 400 MHz) and elemental analysis (Leco 932). For NMR, 5 mg of the sample was dissolved in 0.7 mL of deuterated methanol (CD₃OD). The observed peaks (as seen in Table 1) are abbreviated as s (singlet), d (doublet) t (triplet) and m (multiplet). Elemental analyses were performed according to a standard procedure (ASTM – D5219, 2009). The solid samples (< 2 mg) were enclosed in a silver capsule whereas the liquid samples were analyzed in a silver capsule containing a sorbit pad. Analyses were performed in triplicate and averaged.

2.3. Anti-microbial activity

The ILs were assayed for anti-microbial activity against four registered microbial strains obtained from the Institute of Medical Research (IMR), Kuala Lumpur, Malaysia. These were: gram positive *Listeria monocytogenes* L 49 as well as gram negative *Escherichia coli*,

Aeromonas hydrophila and Salmonella enterica S 1180. This test was carried out using the well-
diffusion method (Tagg and McGiven, 1971; Benkerroum et al., 2003). Muller-Hinton agar (20 mL) (Merck, Germany) was dissolved, melted and cooled to 55 °C and subsequently inoculated with 1 mL of the bacterial suspension. The inoculated agar was transferred to a petri-plate and allowed to cool. Upon solidification of the medium, 6 mm diameter holes were created on the agar plate and 20 µL of the IL solution at different concentrations in deionized water were poured into the wells. The plates were then incubated at 37 °C for 24 h or until visible growth was established and the diameter of the inhibition-cleared zone around each well was determined. The screening results were compared with a standard antibiotic, namely, gentamicin (Atlantis Laboratory, Thailand).

2.4. Determination of minimal inhibitory concentration (MIC)

Determination of minimal inhibitory concentration (MIC) was conducted according to the standard procedure (CLSI-M07-A9, 2008) developed by the Clinical and Laboratory Standards Institute (CLSI), Pennsylvania, USA. The microbial strains were cultured on a Muller-Hinton broth (MHB) for 24 h. The ILs were added to the first two wells of two horizontal rows in the 96-well plate and twofold dilutions were made from the second set of wells while the last wells were kept untreated. Three replicates and seven different concentrations were studied for each IL. For turbid suspensions (optical density ca 0.1 to 0.3 at 530 nm), a 1:1000 dilution was used. The final bacterial inocula ranged from 10^5 to 10^7 colony-forming units (CFU) per milliliter. Gentamicin was used as a positive control while anhydrous dimethylsulfoxide (DMSO) (99.9%, Sigma-Aldrich) was used as a negative control. Microbial growth was visually determined after
incubation for 24 h at 37°C. The lowest concentration at which there was no visible growth (turbidity) was taken as the MIC. The 96 well-plate was subsequently kept in an ELISA plate reader to establish the EC$_{50}$ (effective concentration of IL required for 50 % toxicity within a specified exposure time) at wavelength 530 nm.

3. Results and Discussion

3.1. Characterization

The IR, 1H-NMR and elemental analysis data are listed in Table 1. The IL product yields ranged from 88 to 95 %. For the 1H-NMR spectrum of [2OHim][Cl], the peaks at δ 3.91 and 4.35 ppm indicate two two-proton triplets for –CH$_2$OH and –NCH$_2$- of the side-alkyl chain of the imidazolium ring, respectively. The –CH protons at C-4 and C-5 provide two doublet-doublets at δ 7.53 ($J = 0.16$ Hz, 4-CH) and 7.67 ($J = 0.28$ Hz, 5-CH). The other two singlet peaks correspond to the –NH and –CH proton on C-2 at δ 8.80 and 9.08, respectively. The hydroxyl peak of the studied ILs disappeared, which could be explained by a dynamic proton exchange reaction between the labile proton of the –OH group for the ILs and the labile deuterium of the –OD group for the solvent CD$_3$OD. This can be confirmed by the appearance of a peak with weak intensity at 3.31 δ ppm, which may be attributed to the –OH group of CD$_3$OH. The other two ILs represent similar peaks that correspond to the necessary protons in the molecules which confirm the structures. Similar ILs have been studied and reported (Fraga-Dubreuil and Bazureau, 2003; Choi et al., 2007, Jalili et al., 2010) which can be further used to elucidate the structures of the present ILs.
The IR data confirm the functionality of the IL structures and are further corroborated by the study done by Chang et al. (2007). The functionalities of the present ILs, such as hydroxyl (OH), alkyl (-CH₃ and –CH₂-), tertiary and secondary amino groups (≡N and =NH), and aromatic (CH) structures are confirmed by the IR spectroscopy (Fig. 2). The broad absorption range between 3130 and 3350 cm⁻¹ can be attributed to the presence of the hydroxyl group in the structures. Spectral analysis of this broad absorption range is rather complicated due to the presence of signals rising from the stretching modes of the water together with the hydroxyl groups in the ILs. More likely with the observations of Chowdhury and Thynell (Chowdhury and Thynell, 2006), the –C=C-, –C=N- and C-N stretching frequencies within the imidazolium ring are observed at around 1560, 1450 and 1160 cm⁻¹, respectively. The C-H and C-N(1)-C bending-in-plane (bip) modes appear around 1070 cm⁻¹, with the C-H bending-out-of-plane (bop) modes occurring at 860 and 750 cm⁻¹. The intense peaks at 2950 and 2850 cm⁻¹ can be assigned to the -C-H in-plane stretching of the alkyl groups (Erdmenger et al., 2008). The low-intensity band at 3070 cm⁻¹ can be attributed to the =C-H stretching frequency (Chang et al., 2007). The alkyl (-CH₃ and -CH₂-), NH, aromatic (CH) and hydroxyl (OH) structures detected via ¹H-NMR are consistent with the IR data. The calculated carbon, hydrogen and nitrogen percentages are in good agreement with the experimental values (Table 1).

3.2. Anti-microbial activities of ILs

Agar diffusion technique (Tagg and McGiven, 1971; Benkerroum et al., 2003) was employed for screening purpose. The anti-microbial activities of the synthesized ILs were determined by measuring the inhibition zones on the agar plates. This zone is defined as the area
on the agar plate where microbial growth is inhibited by the test compound. Information from
the screening result was used to select the initial ILs concentration (250 mM) for the MIC test
and subsequently diluted to facilitate the investigation of the effect of the IL concentrations on
the microbial viabilities. The MICs for all ILs are estimated to be 125 mM with the exception of
[2OHim][Cl] and [2OHimC₄][Cl] against Aeromonous hydrophilla and Escherichia coli,
respectively, which record a MIC of 62.5 mM. The viabilities of the Escherichia coli,
Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of the IL
concentrations are shown in Fig. 3. In all cases, the viabilities of the growth decreased with
increasing concentrations as exhibited in the archetypal sigmoid curve except for with
Salmonella enterica which experienced gradual viability decline.

Table 2 shows the EC₅₀ values calculated using the ELISA plate reader. These values ranged
from 23 to 73 mM of all ILs required to limit microbial viabilities to 50%. This interestingly
implied that the anti-microbial activities of all ILs were not as potent as compared to
gentamicin, which exhibits EC₅₀ values ca 2 mM on all four microbial species. The three ILs
exhibited lower toxicities compared to gentamicin by factors ranging from approximately 12 to
36, which are rather significant. Indeed, such findings somewhat contrast our previous study
(Hossain et al., 2011b) in terms of IL anti-microbial potency whereby 2-hydroxy-N-(2-
hydroxyethyl)-N-methylethanaminium acetate was found to exhibit toxicity levels (to Vibrio
cholera and Listeria monocytogenes) comparable with that of gentamicin, albeit it is
acknowledged that these two sets of ILs belong to different IL classifications.

Another trend is apparent; an increase in the chain length of alkyl substituents correlates
with an increased microbial growth inhibition whereby the toxicity level of the studied ILs is:
[2OHimC₄][Cl] (highest) > [2OHimC][Cl] > [2OHim][Cl] (lowest). This observation was
consistent with previous ILs toxicity studies (Pernak et al., 2003, 2004; Docherty and Kulpa, 2005) in which an increase in the chain length of alkyl substituents on the cation ring increases IL toxicity for the imidazolium-based ILs. *Listeria monocytogenes* seems to be the least susceptible to the present ILs among all the studied microbial species since their EC$_{50}$ values are the highest.

4. Conclusions

1-(2-hydroxyethyl)imidazolium chloride, 1-(2-hydroxyethyl)-3-methylimidazolium chloride, and 1-(2-hydroxyethyl)-3-butylimidazolium chloride ILs were synthesized and characterized, and their anti-microbial activities established. These ILs, though capable of inhibiting microbial growth, were not comparable with that of gentamicin in terms of anti-microbial potency. The EC$_{50}$ values of the ILs also indicated a straightforward dependence on the chain length of alkyl substituents on the cation ring. The findings from this study can be used for better design of imidazolium-based ILs with consideration of their aquatic toxicities.

Acknowledgments

The authors acknowledge the PETRONAS Ionic Liquid Center (PILC) and Chemical Engineering Department, Universiti Teknologi PETRONAS, and the Department of Cell and Molecular Biology, Universiti Putra Malaysia for their financial support in conducting this study. El-Harbawi also acknowledges support provided by Research Center of the Faculty of Engineering - King Saud University.
References

Figure captions

Fig. 1. Synthesis reaction and structures of the present ILs.

Fig. 2. IR spectra of the present ILs.

Fig. 3. Viabilities of (a) Escherichia coli, (b) Aeromonas hydrophila, (c) Listeria monocytogenes and (d) Salmonella enterica as a function of ILs concentrations (■ [2OHim][Cl]; ▲ [2OHimC][Cl]; ♦ [2OHimC₄][Cl]).
Table 1. FTIR and NMR spectroscopic and elemental data for the synthesized ILs.

<table>
<thead>
<tr>
<th>Ionic liquid</th>
<th>MW (g/mol)</th>
<th>Yield (%)</th>
<th>FTIR (cm(^{-1}))</th>
<th>(^1)H-NMR ((\delta) ppm)</th>
<th>Elemental analysis (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experimental</td>
<td>Calculated</td>
</tr>
<tr>
<td>[2OHim][Cl]</td>
<td>148.5</td>
<td>86</td>
<td>626.8, 759.9, 829.3, 1066.6, 1163.0, 1446.5, 1581.5, 2846.7, 3143.8, 3357.8</td>
<td>3.91 (t, 2H, CH(_2)OH), 4.35 (t, 2H, N(^+)-CH(_2)), 7.53 (dd, (J=0.16) Hz, 4-CH), 7.67 (dd, (J=0.28) Hz, 5-CH), 8.80 (s, 1H, 3-NH), 9.08 (s, 1H, 2-CH)</td>
<td>C 39.81</td>
<td>C 40.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H 5.96</td>
<td>H 6.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 20.12</td>
<td>N 18.85</td>
</tr>
<tr>
<td>[2OHimC][Cl]</td>
<td>162.5</td>
<td>95</td>
<td>754.1, 867.9, 1072.3, 1164.9, 1448.4, 1568.0, 3072.4, 3145.7, 3232.5</td>
<td>3.90-3.93 (t, 2H, CH(_2)-OH), 4.00 (s, 3H, CH(_3)-N), 4.36-4.39 (t, 2H, CH(_2)-N), 7.62 (s, 1H, 4-CH), 7.68 (s, 1H, 5-CH), 9.01 (s, 1H, 2-CH)</td>
<td>C 44.53</td>
<td>C 44.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H 7.03</td>
<td>H 6.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 17.11</td>
<td>N 17.23</td>
</tr>
<tr>
<td>[2OHimC(_3)][Cl]</td>
<td>204.5</td>
<td>88</td>
<td>752.2, 869.8, 1076.2, 1163.0, 1456.2, 1562.2, 2871.8, 3068.5, 3137.9, 3232.5</td>
<td>1.01 (t, 3H, CH(_3)), 1.39-1.42 (m, 2H, CH(_2)), 1.88-1.95 (m, 2H, CH(_2)), 3.90-3.92 (t, 2H, CH(_2)-OH), 4.29 (t, 2H, CH(_2)-N), 4.36 (t, 2H, CH(_2)-N), 7.70 (s, 1H, 4-CH), 7.72 (s, 1H, 5-CH), 9.10 (s, 1H, 2-CH)</td>
<td>C 52.16</td>
<td>C 52.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H 8.97</td>
<td>H 8.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N 12.98</td>
<td>N 13.69</td>
</tr>
</tbody>
</table>
Table 2. EC$_{50}$ values calculated using ELISA plate reader and expressed in mM.

<table>
<thead>
<tr>
<th></th>
<th>[2OHim][Cl]</th>
<th>[2OHimC][Cl]</th>
<th>[2OHimC$_4$][Cl]</th>
<th>Gentamicin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>58.44±4.07</td>
<td>43.40±2.54</td>
<td>23.67±2.22</td>
<td>2.00</td>
</tr>
<tr>
<td>Aeromonas hydrophila</td>
<td>65.37±1.82</td>
<td>35.54±1.14</td>
<td>31.21±2.51</td>
<td>1.97</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>72.92±1.84</td>
<td>53.79±1.95</td>
<td>52.47±1.24</td>
<td>1.86</td>
</tr>
<tr>
<td>Salmonella enterica</td>
<td>56.16±3.56</td>
<td>50.84±1.72</td>
<td>45.15±4.27</td>
<td>1.92</td>
</tr>
</tbody>
</table>
Fig. 1. Synthesis reaction and structures of the present ILs.

$\text{R} = \text{H}, \text{CH}_3, \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$
Fig. 2. IR spectra of the present ILs.
Fig. 3. Viabilities of (a) Escherichia coli, (b) Aeromonas hydrophila, (c) Listeria monocytogenes, and (d) Salmonella enterica as a function of ILs concentrations ([2OHim][Cl]; ▲ [2OHimC][Cl]; ■ [2OHimC₄][Cl]).