PRECIPITATION AND CHARACTERISATION OF IRON (III) OXYHYDROXIDES FROM ACID LIQUORS.

A THESIS PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

by

School of Mathematical and Physical Sciences
Murdoch University
Perth, Western Australia

1995
I declare that this thesis is my own account of my research and contains work which has not previously been submitted for a degree at any University.

Evan John Jamieson
January, 1995
INDUSTRIAL EXECUTIVE SUMMARY

A detailed literature review on the nature and characteristics of iron oxides & oxyhydroxides has been compiled from the fields of soil science, environmental science, hydrometallurgy, mineral processing, mineralogy and spectroscopy. However, very little has been published discerning the factors controlling precipitation of these iron oxides and oxyhydroxides, particularly at ambient temperature. This thesis aims at providing such information as a set of fundamental guidelines for industry to be able to neutralise and precipitate iron from solution at ambient temperature.

- The structure of ten iron oxides and oxyhydroxides have been reviewed along with associated formation mechanisms. This review was used to compile Figure 1.1 (p4) on the inter-relationship of formation mechanisms.

- A variety of instrumental techniques were reviewed to understand the best methods for identification and characterisation of precipitates. These techniques include XRD (p49), Mössbauer spectroscopy (p54), chemical dissolution (p77), surface area (p84), transmission electron microscopy (p87), thermal gravimetry (p89) and settling ability (p99). The background theory behind each technique is briefly described along with reported data on iron oxides and oxyhydroxides.

- A critical evaluation of these instrumental techniques was conducted (Chapter 6) using a set of samples covering the amorphous to highly crystalline range of iron oxides and oxyhydroxides. Mössbauer spectroscopy used in conjunction with high resolution XRD was found to be the superior technique. However, time and cost constraints related to Mössbauer spectroscopy would prevent its widespread industrial use. A discussion regarding the reliability of other individual techniques concluded that each one taken alone can be very misleading. It is recommended that at least two separate techniques be used to identify and characterise iron oxide and oxyhydroxide precipitates.
The superiority of the Mössbauer technique is best demonstrated in Section 7.3.3 (p173), where the technique was used to investigate charged short chain polymeric species formed at low pH. These results were used to compose Figure 7.11 (p180), which is a new model for the formation of ferrihydrite from polymeric iron oxyhydroxide.

The Mössbauer technique was also paramount to the interpretation of molecular growth and polymer formation during ageing (Section 7.3, p160-186). It was proposed that as caustic is added to an iron (III) chloride solution, localised pH gradients arise. Since the point of zero charge for most iron oxides and oxyhydroxides is between pH 6.6 and 8.2, the possibility exists for both positive (from bulk solution) and negative (from point of caustic addition) charged iron polymers to coexist for a short period of time. Charge balance results in pseudo-chemical agglomeration resulting in larger particles. This theory explained the importance of intermediate polymer ageing, rate of alkali addition etc, and became important for interpreting data from the sulphate, lime and magnesia systems.

For the caustic - iron (III) sulphate system, evidence was presented that the adsorption of FeSO\(_4^+\) complex during precipitation followed by sulphate expulsion, assisted the goethite crystallisation process (Section 7.4.2, p190). It was also proposed that the sulphate ions adsorbed onto the red polymeric iron colloid, lowering surface charge and enhancing agglomeration and crystallisation.

The use of lime or magnesia combined with the sulphate system precipitated a highly crystalline form of ferrihydrite (DABFS, p214, p226), however the lime system co-precipitated gypsum. It appears that the diffusion layer surrounding the dissolving alkali (lime or magnesia) particle has a high localised pH. Ferrihydrite precipitated in this region would have a negative surface charge and would attract positive surface charged colloid from solution (low bulk solution pH) enhancing agglomeration. The formation of this surface layer would slow the release of hydroxide into bulk solution resulting in less polymer being formed. The action of iron sulphate complex within this localised high pH agglomerated layer, assisted formation of dense ferrihydrite by physically orientating incoming iron species giving ordered precipitation.
Factors effecting the formation of precipitates suitable for settling were vigorously pursued for the industrial reader. Many useful observations were discovered during the course of this investigation using pure synthetic liquors.

1: PRECIPITATION FROM IRON (III) CHLORIDE SOLUTIONS.

- Caustic (NaOH) strength, rate and mixing efficiency had little impact upon the precipitate. Neither chloride concentration nor ageing of the intermediates had significant effect (Chapter 7, p146). In all cases, amorphous or poorly crystalline ferrihydrite (5Fe₂O₃.9H₂O) was produced.

- Slaked or dry lime (CaO) and magnesia (MgO) showed little benefit relative to caustic in the settling of precipitates. However their cost saving over the use of caustic will ensure their industrial use (Sections 8.1, p209; 9.1, p223). Magnesia was found to assist with the precipitation of small quantities of iowaite (Mg₆Fe(OH)₈ClₓxH₂O), but the predominant product was ferrihydrite.

- Crystalline precipitates suitable for settling were only achieved using elevated temperatures (>60°C) in line with current industrial processes (Section 7.2, p156).

2: PRECIPITATION FROM IRON (III) SULPHATE SOLUTIONS.

- Caustic was found to precipitate fine crystalline goethite (α-FeOOH) rather than ferrihydrite, however settling was still quite slow (Sections 7.4.2, p190).

- Lime was found to precipitate a highly crystalline ferrihydrite that had exceptional settling ability. However, the co-precipitation of gypsum (CaSO₄) hindered the settling rate (Sections 8.3.1 & 8.3.2, p214).

- Precipitation using magnesia produced a highly crystalline ferrihydrite that was able to settle rapidly in the absence of co-precipitated gypsum (Sections 9.2.1 & 9.2.2, p226).
3: PRECIPITATION FROM IRON (II) CHLORIDE SOLUTIONS

- **Caustic** precipitated highly crystalline maghemite (γ-Fe$_2$O$_3$) at ambient temperature, that settled very rapidly (Section 10.1, p240). This result was heavily influenced by the rate of caustic addition due to air oxidation of iron (II) to iron (III). Precipitation at elevated temperature assisted the formation of magnetite, however this also increased the formation of slow settling ferrihydrite; the end result being a slower settling precipitate than that formed at ambient temperature.

- **Lime and magnesia** gave poorly crystalline maghemite and slow settling ferrihydrite due to air oxidation of iron (II) to iron (III) being catalysed by adsorption at the solid particle surfaces.

COMPARISON OF NEUTRALISATION MEDIA FOR CHLORIDE AND SULPHATE SOLUTIONS.

A comparison of settling rates achieved for the various systems is given in Figure 11.1 (p267), and tabulated in Tables 11.1 - 11.3 (p265). It is recommended that further work be conducted by industry on mixes of iron (II), iron (III), chloride and sulphate, which may be unique to their process. In particular...

- An investigation into a wider range of iron and counter anion concentrations.

- The use of pulp recycle technology for the precipitation of solids from iron (III) chloride solutions at ambient temperature should be investigated further (Section 11.6, p270).

- The dramatic influence of lime and particularly magnesia upon precipitates from iron (III) sulphate solutions at ambient temperature requires more extensive investigation for possible industrial application, especially when combined with pulp recycle technology.
Figure 1.1. The interrelationship in formation conditions between various iron oxides and oxyhydroxides. The chemical formulae for these iron compounds are given below.

(1) Ferrhydrite \(5\text{Fe}_2\text{O}_3.9\text{H}_2\text{O}\)
(2) Goethite \(\alpha\text{-FeOOH}\)
(3) Hematite \(\alpha\text{-Fe}_2\text{O}_3\)
(4) Akaganeite \(\beta\text{-FeOOH}\)
(5) Green complex
(6) Green rust
(7) Magnetite \(\text{Fe}_3\text{O}_4\)
(8) Maghemite \(\gamma\text{-Fe}_2\text{O}_3\)
(9) Lepidocrocite \(\gamma\text{-FeOOH}\)
(10) Zeta FeOOH (Feroxyhite) \(\delta\text{-FeOOH}\)
Figure 7.11. Model for the growth and formation of polymeric material into ferricydrite.
<table>
<thead>
<tr>
<th>KEY</th>
<th>THE SYSTEM</th>
<th>MAJOR PRECIPITATES</th>
<th>SETTLING RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe (III) - Cl - 20°C - NaOH</td>
<td>FERRIHYDRITE</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>Fe (III) - Cl - 40°C - NaOH</td>
<td>FERRIHYDRITE, GOETHITE</td>
<td>0.11</td>
</tr>
<tr>
<td>3</td>
<td>Fe (III) - Cl - 60°C - NaOH</td>
<td>FERRIHYDRITE, GOETHITE, HEMATITE</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>Fe (III) - SO4 - 20°C - NaOH</td>
<td>GOETHITE</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>Fe (III) - SO4 /Cl - 20°C - NaOH</td>
<td>FERRIHYDRITE</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>Fe (II) - Cl - 20°C - NaOH</td>
<td>MAGHEMITE</td>
<td>1.42</td>
</tr>
<tr>
<td>7</td>
<td>Fe (II) - Cl - 70°C - NaOH</td>
<td>MAGHEMITE, MAGNETITE</td>
<td>0.23</td>
</tr>
<tr>
<td>8</td>
<td>Fe (II)/Fe(III) - Cl - 20°C - NaOH</td>
<td>FERRIHYDRITE, MAGHEMITE, AKAGANEITE</td>
<td>0.37</td>
</tr>
<tr>
<td>9</td>
<td>Fe (III) - Cl - 20°C - CaO</td>
<td>FERRIHYDRITE</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>Fe (III) - Cl - 60°C - CaO</td>
<td>FERRIHYDRITE, CALCITE</td>
<td>0.02</td>
</tr>
<tr>
<td>11</td>
<td>Fe (III) - SO4 - 20°C - CaO</td>
<td>FERRIHYDRITE, GYPSUM</td>
<td>0.28</td>
</tr>
<tr>
<td>12</td>
<td>Fe (III) - SO4 /Cl - 20°C - CaO</td>
<td>FERRIHYDRITE, GYPSUM</td>
<td>0.45</td>
</tr>
<tr>
<td>13</td>
<td>Fe (II) - Cl - 20°C - CaO</td>
<td>FERRIHYDRITE, MAGHEMITE</td>
<td>0.09</td>
</tr>
<tr>
<td>14</td>
<td>Fe (II) - Cl - 70°C - CaO</td>
<td>MAGHEMITE, MAGNETITE</td>
<td>0.21</td>
</tr>
<tr>
<td>15</td>
<td>Fe (II)/Fe(III) - Cl - 20°C - CaO</td>
<td>FERRIHYDRITE, AKAGANEITE, CALCITE</td>
<td>0.06</td>
</tr>
<tr>
<td>16</td>
<td>Fe (III) - Cl - 20°C - MgO</td>
<td>FERRIHYDRITE, IOWAITE</td>
<td>0.01</td>
</tr>
<tr>
<td>17</td>
<td>Fe (III) - Cl - 60°C - MgO</td>
<td>FERRIHYDRITE, IOWAITE</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Fe (III) - SO4 - 20°C - MgO</td>
<td>FERRIHYDRITE</td>
<td>1.14</td>
</tr>
<tr>
<td>19</td>
<td>Fe (III) - SO4 /Cl - 20°C - MgO</td>
<td>DABFS</td>
<td>1.08</td>
</tr>
<tr>
<td>20</td>
<td>Fe (II) - Cl - 20°C - MgO</td>
<td>FERRIHYDRITE, MAGHEMITE</td>
<td>0.1</td>
</tr>
<tr>
<td>21</td>
<td>Fe (II)/Fe(III) - Cl - 20°C - MgO</td>
<td>FERRIHYDRITE, IOWAITE</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Figure 11.1. A comparison of settling rates between systems.

NOTE: Systems 1, 2 & 3 show the effect of temperature with pure iron (III) chloride using NaOH.

Systems 4 & 5, 11 & 12 and 18 & 19 show the influence of sulphate.

Systems 6, 7 & 8, 13, 14 & 15 and 20 & 21 show the influence of iron (II).
TABLE OF CONTENTS

ACKNOWLEDGMENTS
ABSTRACT
STRUCTURE OF THESIS

1 INTRODUCTION

2 THE STRUCTURE OF IRON OXIDES AND OXYHYDROXIDES
 2.1 FERRIHYDRITE
 2.2 GOETHITE
 2.3 HEMATITE
 2.4 AKAGANEITE
 2.5 GREEN COMPLEXES
 2.6 GREEN RUSTS
 2.7 MAGNETITE
 2.8 MAGHEMITE
 2.9 LEPIDOCROCITE
 2.10 FEROXYHITE
 2.11 SUMMARY

3 FORMATION OF IRON OXIDES AND OXYHYDROXIDES
 3.1 FORMATION OF POLYCATIONS
 3.2 FORMATION OF FERRIHYDRITE
 3.3 FORMATION OF GOETHITE
3.4 FORMATION OF HEMATITE 31
3.5 FORMATION OF AKAGANEITE 32
3.6 FORMATION OF GREEN COMPLEXES 35
3.7 FORMATION OF GREEN RUSTS 36
3.8 FORMATION OF MAGNETITE 37
 3.8.1 TEMPERATURE 37
 3.8.2 EFFECT OF pH 38
 3.8.3 EFFECT OF CATIONS 39
 3.8.4 EFFECT OF ANIONS 39
 3.8.4.1 THE SULPHATE SYSTEM 40
 3.8.4.2 THE CHLORIDE SYSTEM 41
 3.8.5 THE OXIDATION OF IRON (II) TO IRON (III) 42
 3.8.6 CONCLUSION 43
3.9 FORMATION OF MAGHEMITE 43
3.10 FORMATION OF LEPIDOCROCITE 45
3.11 FORMATION OF ZETA FeOOH, FEROXYHITE 46
3.12 SUMMARY 47

4 TECHNIQUES FOR THE CHARACTERISATION OF IRON OXYHYDROXIDES 48

4.1 X-RAY DIFFRACTION 49
 4.1.1 BACKGROUND THEORY 49
 4.1.2 APPLICATION TO IRON OXYHYDROXIDES 52
 4.1.3 CONCLUSIONS 52
4.2 MöSSBAUER SPECTROSCOPY

4.2.1 CHEMICAL SHIFTS

4.2.2 QUADRUPOLE INTERACTIONS

4.2.3 MAGNETIC HYPERFINE INTERACTIONS

4.2.4 OTHER FACTORS

4.2.5 CHARACTERISTIC MöSSBAUER DATA FOR IRON OXYHYDROXIDES

4.2.5.1 FERRIHYDRITE

4.2.5.2 GOETHITE

4.2.5.3 HEMATITE

4.2.5.4 AKAGANEITE

4.2.5.5 GREEN RUSTS

4.2.5.6 MAGNETITE

4.2.5.7 MAGHEMITE

4.2.5.8 LEPIDOCROCITE

4.2.5.9 ZETA (δ FeOOH) AND FEROXYHITE (δ'FeOOH)

4.2.5.10 POLYMERIC IRON OXYHYDROXIDE

4.3 DISSOLUTION TECHNIQUES

4.3.1 ACID AMMONIUM OXALATE

4.3.2 DITHIONITE CITRATE BICARBONATE

4.3.3 HYDROXYLAMINE

4.3.4 OTHERS

4.4 SURFACE AREA
4.5 TRANSMISSION ELECTRON MICROSCOPY 87
4.6 THERMAL GRAVIMETRY 89
 4.6.1 GOETHITE 92
 4.6.2 AKAGANEITE 94
 4.6.3 LEPIDOCROCITE 96
 4.6.4 MAGNETITE 97
 4.6.5 IRON (III) OXIDE GELS, AMORPHOUS MATERIALS 98
4.7 SETTLING RATE 99
 4.7.1 FREE SETTLING ZONE 99
 4.7.2 HINDERED SETTLING ZONE 101
 4.7.3 NETWORK SETTLING ZONE 102
 4.7.4 GEL STRUCTURE ZONE 105
 4.7.5 CONCLUSION 106
4.8 SUMMARY 106

5 EXPERIMENTAL 107
 5.1 CHEMICALS 107
 5.2 REACTOR DESIGN 107
 5.2.1 TANK GEOMETRY 108
 5.2.2 TYPE OF IMPELLER 109
 5.2.3 TURBINE SPEED 111
 5.2.4 FEED POSITION 113
 5.3 STANDARD PRECIPITATION METHOD 114
 5.4 SETTLING RATE 115
 5.5 X-RAY DIFFRACTION 116
5.6 MöSSBAUER SPECTROSCOPY

5.7 DISSOLUTION TECHNIQUES

5.7.1 ACID AMMONIUM OXALATE (AAO)

5.7.2 DITHIONITE CITRATE BICARBONATE (DCB)

5.7.3 HYDROXYLAMINE (HA)

5.7.4 TOTAL IRON

5.8 SURFACE AREA

5.9 TRANSMISSION ELECTRON MICROSCOPY

5.10 THERMAL GRAVIMETRY

6 EVALUATION OF CHARACTERISATION TECHNIQUES

6.1 X-RAY DIFFRACTION

6.2 MöSSBAUER SPECTROSCOPY

6.3 DISSOLUTION TECHNIQUES

6.3.1 ACID AMMONIUM OXALATE REAGENT

6.3.2 DITHIONITE CITRATE BICARBONATE REAGENT

6.3.3 HYDROXYLAMINE REAGENT

6.3.4 DISCUSSION

6.4 SURFACE AREA

6.5 TRANSMISSION ELECTRON MICROSCOPY

6.6 THERMAL GRAVIMETRY

6.7 SETTLING RATE AND SEDIMENT VOLUME

6.8 COMPARISON AND DISCUSSION

6.9 CONCLUSIONS
7 PRECIPITATION OF IRON (III) OXIDE AND OXYHYDROXIDE WITH CAUSTIC (NaOH) 146

7.1 MIXING CRITERIA 147

7.1.1 DETERMINATION OF FLOW CHARACTERISTICS WITH MIXING 148

7.1.2 HETEROGENEOUS AND HOMOGENEOUS PRECIPITATION 153

7.2 TEMPERATURE 156

7.3 NEUTRALISATION, NUCLEATION AND PRECIPITATION 160

7.3.1 MANIPULATION OF THE TWO STEP PRECIPITATION PROCESS 160

7.3.1.1 PERCENTAGE OF TOTAL ALKALI ADDED IN FIRST STEP 161

7.3.1.2 DURATION OF THE INTERMEDIATE AGING STEP 166

7.3.1.3 TURBINE SPEED 169

7.3.2 ONE OR TWO STEP PRECIPITATION PROCESS 170

7.3.3 MöSSBAUER ANALYSIS OF INTERMEDIATES FORMED DURING THE NUCLEATION PROCESS 173

7.4 INFLUENCE OF ANIONS UPON THE SIMPLE SYSTEM 187

7.4.1 EFFECT OF HIGH CHLORIDE BACKGROUND CONCENTRATION 187

7.4.2 EFFECT OF SULPHATE ION 190

7.4.3 HIGH SULPHATE BACKGROUND CONCENTRATION 195

7.4.4 CHLORIDE / SULPHATE MIXTURES 196

7.5 INFLUENCE OF OTHER CATIONS 198
7.6 INFLUENCE OF CITRATE AND OXALATE

7.7 CONCLUSION

8 PRECIPITATION OF IRON (III) OXIDE AND OXYHYDROXIDE WITH LIME

8.1 LIME AND IRON (III) CHLORIDE

8.2 HETEROGENEOUS PRECIPITATION

8.3 THE INFLUENCE OF ANIONS UPON THE CaO SYSTEM

8.3.1 SULPHATE

8.3.2 CHLORIDE AND SULPHATE MIXTURES

8.4 CONCLUSION

9 PRECIPITATION OF IRON (III) OXIDE AND OXYHYDROXIDE WITH MAGNESIA

9.1 MAGNESIA AND IRON (III) CHLORIDE

9.1.1 EFFECT OF VARYING FIRST STEP ADDITION

9.1.2 EFFECT OF HIGHER TEMPERATURE

9.2 INFLUENCE OF ANIONS

9.2.1 SULPHATE

9.2.2 CHLORIDE AND SULPHATE MIXTURES

9.3 HIGHER IRON CONcentrATIONS

9.4 COMPARISON OF MgO, Mg(OH)_2, MgCO3

9.5 CONCLUSIONS
10 PRECIPITATION FROM IRON (II) SOLUTIONS USING CAUSTIC, LIME AND MAGNESIA

10.1 NUCLEATION OF Fe(OH)₂ USING CAUSTIC 240
10.2 THE OXIDATION PROCESS 246
10.3 EFFECT OF TEMPERATURE 248
10.4 EFFECT OF LIME AND MAGNESIA ON THE IRON (II) CHLORIDE SYSTEM 253

10.5 MIXED IRON (II)/(III) CHLORIDE SYSTEMS WITH CAUSTIC, LIME AND MAGNESIA 256

10.5.1 THE CAUSTIC MIXED IRON (II)/(III) CHLORIDE SYSTEM 257
10.5.2 THE LIME MIXED IRON (II)/(III) CHLORIDE SYSTEM 258
10.5.3 THE MAGNESIA MIXED IRON (II)/(III) CHLORIDE SYSTEM 260

10.6 CONCLUSIONS 261

11 CONCLUSIONS FOR INDUSTRIAL APPLICATIONS AND RECOMMENDATIONS FOR FURTHER STUDY 263

11.1 THE PURE IRON (III) CHLORIDE SYSTEM 263
11.2 THE PURE IRON (III) SULPHATE SYSTEM 268
11.3 THE MIXED IRON (III) CHLORIDE / SULPHATE SYSTEM 269
11.4 THE PURE IRON (II) CHLORIDE SYSTEM 269
11.5 THE MIXED IRON (II) / IRON (III) CHLORIDE SYSTEM 270
11.6 RECOMMENDATIONS FOR FURTHER INVESTIGATION 270

12 REFERENCES 274
ACKNOWLEDGMENTS

Sincere thanks to my supervisors, Associate Professor David Muir (principal, Murdoch University) for his support, scientific guidance and critical review throughout this project; Doctor John Farrow (CSIRO) for his many valued contributions, particularly with particle settling properties and Professor Ian Ritchie (A.J. Parker, Hydrometallurgy CRC) for coordinating the industrial sponsorship and his interest in this project. Their combined support and encouragement has allowed for a rewarding completion of this thesis.

Special thanks to Mr J. Biddle for his assistance with the XRD, Mr P. Fallon for his expertise on the TEM and Mr P. Austin for use of the equipment at the Particle Analysis Facility at Curtin University. Their technical expertise ensured the smooth progress of results. I am particularly indebted to Dr Tim St Pierre for his expert guidance and interpretation of Mössbauer spectra.

I am grateful to TIWEST JOINT VENTURE for their sponsorship of this project and my scholarship. I am also grateful for the opportunity to have worked "on site" for two months to gain an insight into industrial practice and possible application of this report. Without their generous support and the interest afforded to me, this thesis would not have been possible.

I wish to thank my parents for their support and encouragement shown to me, especially for the early university days when things were tight. Thanks to Bob and Val for their diligent assistance in proofing this document and their encouragement throughout. Thanks to Steve, Ian, Marco and Mick for suffering at my frustrations being taken out on a squash ball. Finally, I thank my wife Barbara for always being by my side; a woman of distinction and lady of honour. To God be the glory.

1 Peter 4:11.
"If anyone ministers, let him do it as with the ability that God supplies, that in all things God may be glorified through Jesus Christ, to whom belong the glory and the dominion forever and ever." NKJV
ABSTRACT

An important problem in the mineral processing industry is the removal of iron (III) from process and waste streams by precipitation as the metal hydroxide by elevation of pH. Caustic (NaOH), lime (CaO) and slaked lime (Ca(OH)$_2$), are cheap and effective reagents for this purpose, however iron (III) oxyhydroxides often form polymeric chains when precipitated at ambient temperature. This gelatinous material is slow to settle and difficult to filter, unlike the crystalline solids obtained at higher temperature.

A systematic fundamental study was undertaken to assess the suitability of various characterisation techniques to the iron oxide and oxyhydroxide group of minerals. Techniques such as chemical dissolution methods, surface area, TEM and thermal gravimetry were found to be very useful for comparative purposes, but were not recommended as primary characterisation techniques. Mössbauer spectroscopy proved to be the most reliable method for determination of phase composition especially when used in conjunction with XRD. However cost and time for analysis prevent this technique being used extensively. It was found that XRD, settling rate and settled sediment volume were broadly applicable and able to identify variation between samples cheaply and efficiently.

This study also methodically compared the settling rates, sediment volumes and iron oxide phases associated with using caustic solution, dry & slaked lime and dry & slaked magnesia.

Pure sodium hydroxide and iron (III) chloride solutions were used to represent the simplest system. Factors such as temperature, mixing, neutralisation rate, heterogeneous precipitation, sulphate addition, the presence of divalent cations (Mg$^{2+}$) and strong iron (III) ligands (e.g. citrate, oxalate) were investigated with this system. Generally the predominant iron phase precipitated was the poor order 0 or 2 XRD line ferricydrite. The temperature during precipitation was found to be the only critical parameter in changing product crystallinity and morphology. However, some other factors were able to produce small changes in agglomeration and settling rates, suggesting processes such as pulp recycle may prove beneficial. The iron (III) sulphate system induced a change in precipitates producing microcrystalline goethite, although settling rates were not improved.
The use of slowly dissolving lime in the iron (III) chloride system was unable to improve precipitate crystallinity or settling rate, however results suggest that lime and caustic can be used interchangeably. The lime / iron (III) sulphate system produced a co-precipitate of ferrihydrite and gypsum of enhanced settling ability relative to the caustic system.

The use of sparingly soluble magnesia failed to improve the precipitate of the iron (III) chloride system, however substantial improvement was found in the crystallinity and settling rate when using the iron (III) sulphate and mixed chloride / sulphate system, provided a range of conditions were met. This product resembled "dense amorphous basic ferric sulphate" (DABFS) and was identified as a highly ordered form of ferrihydrite by Mössbauer studies. It is suggested that this precipitate may form the basis for a new low temperature industrial precipitation process.

To further investigate the iron precipitation process, iron (II) and mixed iron (II)/(III) chloride solutions were hydrolysed with the addition of sodium hydroxide, calcium oxide and magnesium oxide under well aerated conditions. Dense maghemite was produced with the caustic system at ambient temperature which settled faster than magnetite precipitated at 70°C. The divalent cations Ca²⁺ and Mg²⁺ appear to hinder precipitation of crystalline maghemite at ambient temperature, forming the gelatinous poorly ordered ferrihydrite.

This fundamental and systematic study of the precipitation process of iron oxides and oxyhydroxides has led to an improvement in the integral understanding of iron (III) hydrolysis. The investigation of characterisation techniques has also led to an enhanced knowledge of their interaction with these precipitates and hence their strengths and weaknesses.
STRUCTURE OF THE THESIS

An introduction to the problem facing industry regarding the treatment of iron burdened effluent and subsequent precipitate removal is presented in Chapter 1. It includes a summary of what is known about the iron precipitation process and current industrial procedures.

Chapter 2, reviews the structure of each of the various iron oxides and oxyhydroxides. This gives a basis for understanding the formation process of these structures which is reviewed in Chapter 3.

Chapter 4 discusses the standard characterisation techniques frequently performed upon these iron minerals. These techniques are both physical and chemical in orientation. This chapter seeks to out line the relative strengths of each technique as well as giving an insight into how each technique operates.

Chapter 5 outlines the experimental procedures used, along with descriptions of how some of the procedures and techniques were conceived. Particular attention was paid to the reactor design.

Chapter 6 looks at a series of experimentally prepared samples which cover a range of the iron oxides and oxyhydroxides. These samples were used to evaluate the various chemical and physical characterisation techniques and relate these findings to those observed by others. The evaluation of results was used to reflect upon the reliability and practicality of each of the techniques involved.
Chapters 7, 8 and 9 report the various factors which influence iron (III) precipitation using sodium hydroxide, calcium oxide and magnesium oxide, respectively.

Chapter 10 looks at the related precipitation process for iron (II) solutions, including the use of sodium hydroxide, calcium oxide and magnesium oxide as the source of alkali. Other factors such as temperature and oxidation rate of iron (II) are also investigated.

Chapter 11 summarises the basic findings of this report and describes its limitations. The application of the knowledge gained by this thesis to industrial operations and areas that require further investigation are also discussed.

Chapter 12 contains a list of relevant references used throughout the text.