The possible role and significance of carrier swamp buffalo in the transmission of Foot and Mouth Disease in South East Asia (SEA)

Blesilda C. Verin, DVM

This thesis is presented for the degree of Doctor of Philosophy,

Murdoch University, 2011
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Blesilda C. Verin
Table of Contents

Title Page ...i
Declaration...ii
Table of Contents ...iii
Glossary ...ix
Abstract ..xii
List of Tables ...xv
List of Figures ..xix
Acknowledgements ..xx

Chapter 1- General Introduction ..1

Chapter 2 - Literature Reviews ...8
 2.1 The Buffalo ..8
 2.2 The Virus ...9
 2.3 Host Specificity ...12
 2.3.1 Buffalo Infection ...13
 2.4 Distribution ...15
 2.5 Pathogenesis ..17
 2.6 Clinical and Pathological Findings ...18
 2.7 Epidemiology and Transmission ..21
 2.7.1 ASB and African Buffalo Possible Role in the FMD Epidemiology21
 2.8 Persistent Infection and the Carrier State of FMDV21
 2.8.1 Duration of the FMDV Carrier State ...25
 2.8.2 Persistent Mixed Infections ..27
 2.8.3 Site of FMDV Persistence in Carrier Animals28
 2.8.4 FMDV Carriers Causing Outbreaks ..29
2.9 FMD Diagnosis

2.9.1 Identification of the Agent

2.9.2 Serological Tests

2.9.2.1 Detection of Antibody to FMDV Structural Proteins

2.9.2.2 Detection of Antibody to FMDV Non-Structural Proteins

2.9.3 Identification of and Tests for Persistently Infected “Carrier” Animals

2.9.3.1 Probang Sample with FMD Virus Isolation

2.9.3.2 NSP Antibody and Salivary IgA Antibody to FMDV in Carriers

2.9.3.3 Detection of FMDV Carriers in Livestock Trade

2.10 Prevention and Control of FMD

2.10.1 Surveillance and Early Detection

2.10.2 Quarantine and Movement Control

2.10.3 Depopulation and Decontamination

2.10.4 Vaccination for FMD Control

2.10.5 Other Aspects of Prevention and Control

Chapter 3 - Materials and Methods

3.1 Study Area

3.2 The Sample Collection

3.3 Collection of Samples, Processing and Storage

3.3.1 Collection of Saliva

3.3.2 Collection of Blood

3.3.3 Collection of Probang Fluid

3.4 Analysis of Samples

3.4.1 Virus Isolation

3.4.2 FMD Virus Typing using Indirect ELISA

3.4.3 RNA Extraction

3.4.4 real time RT-PCR
Chapter 4 - Diagnostic Tests for Foot and Mouth Disease (FMD) in Asian Swamp Buffalo (ASB)57
 4.1 Introduction ..57
 4.2 Materials and Methods ...57
 4.2.1 Virus Detection ..58
 4.2.2 Structural Protein Antibody Tests ..58
 4.2.3 Non-Structural Protein (NSP) Antibody Tests ...59
 4.2.4 Detection of IgA in Saliva ..60
 4.2.5 Analysis of Data ..60
 4.3 Results ...61
 4.3.1 FMD Virus Isolation ..61
 4.3.2 FMDV real time RT-PCR ..62
 4.3.3 Antibody to Structural Protein By LPBELISA ..63
 4.3.4 Evaluation of NSP Antibody ELISA Tests ..64
 4.4 Discussion ..65

Chapter 5 - Foot and Mouth Disease (FMD) in Asian Swamp Buffalo (ASB) ...75
 5.1 Introduction ..75
5.2 Materials and Methods……………………………………………………………………..76

5.2.1 Herd Level Prevalence and
 Outbreak Data on FMD in ASB in
 Lao PDR and Myanmar (2005-2009)………………………………………………..76

5.2.2 Cross Sectional Study of FMDV Persistence
 In ASB in Previously Infected Herds in
 Lao PDR and Myanmar ……………………………………………………………..76
 5.2.2.1 Sampling Sites…………………………………………………………..77
 5.2.2.2 Sample Collection…………………………………………………………..77
 5.2.2.3 Laboratory Procedures…………………………………………………………..78
 5.2.2.4 Statistical Analysis…………………………………………………………..79

5.3 Results……………………………………………………………………………………..79

5.3.1 Analysis of Herd Level Outbreak
 Data for FMD in Lao PDR and Myanmar
 over five years……………………………………………………………………..79

5.3.2 Results of Cross-Sectional Serological
 Studies in ASB in Lao PDR and Myanmar…………………………………………..82
 5.3.2.1 Percentage Seropositives
 By NSP ELISA and Salivary IgA ELISA
 test positives in ASB…………………………………………………………..82
 5.3.2.2 FMD Herd Level Percentage Positivity
 By VI and real time RT-PCR…………………………………………----------88

5.4 Discussion…………………………………………………………………………………..89

Chapter 6 - Role of Asian Swamp Buffalo
 as Foot and Mouth (FMD) Carrier ……………………………………………………..96

6.1 Introduction……………………………………………………………………………….96

6.2 Materials and Methods…………………………………………………………………97

 6.2.1 Sampling Sites…………………………………………………………………97
 6.2.2 Sampling Strategy………………………………………………………………98
 6.2.3 Laboratory Tests…………………………………………………………………99
 6.2.3.1 Virus Isolation (VI)………………………………………………………99
 6.2.3.2 real time RT-PCR………………………………………………………99
 6.2.3.3 Antigen Detection by
Indirect ELISA………………………………………………………….100

6.2.3.4 Non-Structural Protein
Antibody Detection……………………………………………………100

6.2.3.5 IgA Detection……………………………………………………100

6.2.4 Data Analysis…………………………………………………………101

6.3 Results……………………………………………………………………101

6.3.1 Elisa Test Comparisons On
Field Sample Collection………………………………………………101

6.3.2 Bayesian Analysis of ELISA
test performance…………………………………………………………102

6.3.3 FMDV Persistence percentage detection
by NSP ELISA and by Salivary IgA ELISA in
previously infected ASB in the herd in all
three different sampling periods in Lao PDR……………………104

6.3.4 Investigation of FMD Carriers in ASB
using Virus Isolation in Lao PDR………………………………………105

6.3.5 FMD Serotypes detected by salivary
IgA ELISA tests in ASB in Lao PDR……………………………………108

6.3.6 Results of the Longitudinal
Study in Lao PDR…………………………………………………………108

6.3.7 Percentage Detection of FMDV Persistence
by NSP ELISA and by Salivary IgA ELISA
in previously infected ASB in the Herd
in all three different sampling
periods in Myanmar…………………………………………………..110

6.3.8 FMD Serotypes detected by salivary
IgA ELISA tests in ASB in Myanmar…………………………………114

6.3.9 Investigation of FMD Carriers in ASB
using Virus Isolation and real time
RT-PCR in Myanmar…………………………………………………..115

6.3.10 Results of the Longitudinal
Study in Myanmar……………………………………………………118

6.3.11 Percentage of The ASB from previously
infected herds that remained persistently
positive in ELISA tests; that becomes negative over time; and the percentage of negatives that became positive in both Lao PDR and Myanmar

6.4 Discussion

Chapter 7 General Discussion

Appendices

References
GLOSSARY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlOH<sub>3</sub></td>
<td>Aluminium hydroxide gel</td>
</tr>
<tr>
<td>ASB</td>
<td>Asian Swamp Buffalo</td>
</tr>
<tr>
<td>BTY</td>
<td>Bovine Thyroid</td>
</tr>
<tr>
<td>C-ELISA</td>
<td>Competition Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathic Effect</td>
</tr>
<tr>
<td>CT</td>
<td>Threshold cycle</td>
</tr>
<tr>
<td>DOE</td>
<td>Double oil emulsion</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FMD</td>
<td>Foot and Mouth Disease</td>
</tr>
<tr>
<td>FMDV</td>
<td>Foot and Mouth Disease Virus</td>
</tr>
<tr>
<td>GC</td>
<td>Germinal Centres</td>
</tr>
<tr>
<td>H<sub>2</sub>SO<sub>4</sub></td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>IAH</td>
<td>Institute for Animal Health</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunoglobulin A</td>
</tr>
<tr>
<td>IgG HRPO</td>
<td>Immunoglobulin Horseradish Peroxidase</td>
</tr>
<tr>
<td>Lao PDR</td>
<td>Lao People’s Democratic Republic</td>
</tr>
<tr>
<td>LCM</td>
<td>Laser Microdissection</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LPBE</td>
<td>Liquid Phase Blocking Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>Mab</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>MGPs</td>
<td>Magnetic Glass Particles</td>
</tr>
<tr>
<td>NRC</td>
<td>Non-reactive control</td>
</tr>
<tr>
<td>NSP ELISA</td>
<td>Non-Structural Protein Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>OIE</td>
<td>Office International Epizooties</td>
</tr>
<tr>
<td>OP</td>
<td>Oropharyngeal or Oesophageal</td>
</tr>
<tr>
<td>OPD</td>
<td>o-phenylenediamine dihydrochloride</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PBST</td>
<td>Phosphate Buffer Saline Tween</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PI</td>
<td>Percentage Inhibition</td>
</tr>
<tr>
<td>PI</td>
<td>Post Infection</td>
</tr>
<tr>
<td>RC</td>
<td>Reactive Control</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RRL</td>
<td>Regional Reference Laboratory</td>
</tr>
<tr>
<td>rRT-PCR</td>
<td>Real-Time Reverse Transcriptase - Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcriptase- Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SAT</td>
<td>South African Territory</td>
</tr>
<tr>
<td>SEA</td>
<td>South East Asia</td>
</tr>
<tr>
<td>SEACFMD</td>
<td>South East Asia and China Foot and Mouth Disease</td>
</tr>
<tr>
<td>SEAFMD</td>
<td>South East Asia Foot and Mouth Disease</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sn</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>Sp</td>
<td>Specificity</td>
</tr>
<tr>
<td>SPCE</td>
<td>Solid-Phase Competition ELISA</td>
</tr>
<tr>
<td>SVD</td>
<td>Swine Vesicular Disease</td>
</tr>
<tr>
<td>TAGS</td>
<td>Test in the Absence of Gold Standard</td>
</tr>
<tr>
<td>TSA</td>
<td>Tyramide Signal Amplification</td>
</tr>
<tr>
<td>ul</td>
<td>microliter</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>VEV</td>
<td>Vesicular Exanthema Virus</td>
</tr>
<tr>
<td>VI</td>
<td>Virus Isolation</td>
</tr>
<tr>
<td>VNT</td>
<td>Virus Neutralization Test</td>
</tr>
<tr>
<td>VP</td>
<td>Virus Protein</td>
</tr>
<tr>
<td>VSV</td>
<td>Vesicular Stomatitis Virus</td>
</tr>
<tr>
<td>WRL</td>
<td>World Reference Laboratory</td>
</tr>
</tbody>
</table>
Abstract

Foot and Mouth Disease (FMD) is a serious trans-boundary livestock disease and is present in many parts of the world. It can result in devastating economic impacts in affected countries or regions. It is endemic in South East Asia (SEA) including Lao PDR and Myanmar. Susceptible animals infected with FMD typically show clinical signs two to four days after exposure to the virus, and in some cases within 24 hours, especially in pigs. However, some animals develop only mild lesions and in others lesions may not be visible. Some animals become persistently infected after recovery. This is the so-called ‘carrier’ state where the virus can still be recovered after 28 days post infection (PI) in the oesophageal-pharyngeal (OP) region.

In SEA, the Asian swamp buffalo (ASB), is important to livestock systems and communities and therefore the presence of FMDV in persistently infected ASB, is potentially of importance in disease control. To investigate the presence and the role of FMD carriers in ASB, cross-sectional and longitudinal studies were conducted in both Lao PDR and Myanmar. The cross-sectional studies were conducted to evaluate the use of tests to detect carriers under field conditions and to determine the percentage of ASB that were seropositive after infection; and the longitudinal studies were conducted to determine the proportion of ASB that remained persistently infected and also measure the duration of persistent infection. The studies were conducted at the sites of FMD outbreaks in 2008. These were due to FMD serotype O as confirmed by FMD laboratory reports from both FMD national laboratories and from the Regional Reference Laboratory (RRL) for FMD in Thailand.

In this study, several tests to detect FMD carrier animals were used and results of the
tests were compared. All laboratory diagnosis of samples collected from both Lao PDR and Myanmar were done at the Institute for Animal Health (IAH), Pirbright Laboratory, United Kingdom. The internationally accepted standard for confirmation of diagnosis of an FMD carrier animal is by recovery of live FMDV from OP fluid collected by probang sampling. This is a highly invasive process and is labour intensive and the recovery of the FMDV in carrier animals is usually intermittent. This makes OP fluid sampling difficult to use as routine diagnosis for carrier identification. An IgA ELISA based test has been developed to detect FMDV-specific immunoglobulin A (IgA) which is present in the serum and also in the saliva of animals after infection with and vaccination by FMDV. It has also been shown that the level of FMD-specific IgA was elevated in carrier animals and this IgA ELISA based test was developed to quantify this elevated level of FMD-specific salivary IgA in persistently infected animals. The non-structural protein (NSP) ELISA which differentiates antibodies due to infection from vaccination and which have been previously used in other species to identify animals that have been infected with FMD and which may still be carrying live virus was validated and used in this study.

This study is the first to validate test performances of the above tests on ASB population previously infected with FMDV. Using the Bayesian statistical analysis, the overall test sensitivity (Sn) of the four NSP ELISAs and the salivary IgA ELISA vary from 60% to 80% only but with high test specificity (Sp), which ranged from 97% to 99%. To maximize detection, a strategy of combining two independent tests, one NSP ELISA (Priocheck) and the IgA ELISA was made. Results of the test Se of the two combined tests showed an increase from 80% to 98% with test Sp of 99%. The performance of the virus isolation (VI) and the real time RT-PCR on ASB
population was validated using 101 OP fluid samples collected eight months PI. Results from VI showed that 14% of the 101 ASB were persistently FMD infected at eight months PI while only 10% of those were persistently FMD infected by real time RT-PCR. Using the strategy of combining two tests and to address specificity issue, only those samples that tested positive to both NSP ELISA and IgA ELISA (Priocheck +ve / IgA +ve) were considered as persistently FMD infected animals. The results showed a higher detection rate (32.7%) compared to VI and real time RT-PCR (10% to 14%).

This study also provided evidence of either silent infection, cross-infection, repeated reinfection, or virus persistence in ASB and that carrier animals may have transmitted the virus to naïve animals in Lao PDR. In this case serotype A was isolated from carrier ASB and their contacts were positive for serotype A in the IgA ELISA test instead of the expected serotype O virus which was the cause of the 2008 outbreak among cattle and ASB in Lao PDR.

The study has also provided evidence for the presence of a carrier state in ASB for at least 20 months PI, which was the end of the study period. Based on these findings a follow up study to investigate further the mechanisms and the epidemiological significance of ASB carriers in the maintenance and transmission of FMD will be necessary to fully understand the epidemiology of FMD in SEA. This will require more controlled laboratory studies using the tools validated in this study to clarify the mechanism for establishment of carriers, the factors influencing transmission and to demonstrate the rates of transmission from carrier ASB. This will be a crucial issue in the control and eventual eradication of the disease in the SEA region.
List of Tables

Table 3.1 Sample collection periods for cross sectional and longitudinal studies

Table 4.1 Summary of OP fluid samples tested by VI and real time RT-PCR

Table 4.2 Real time RT-PCR test evaluations against a gold standard at eight months PI in ASB OP fluid samples

Table 4.3 Percentage seropositivity by LPBE for two serotypes O and A in the cross sectional study in ASB in Lao PDR and Myanmar.

Table 4.4 NSP ELISA and LPBE test specificity (Sp) evaluation using water buffalo samples (WBS).

Table 4.5 Test Sn and Sp of LPBE and 4 NSPE kits on 221 serum samples four months post-FMD outbreaks in Ayeyarwaddy and Yangon Divisions in Myanmar

Table 4.6 Test Se and Sp of LPBE and 4 NSPE kits on 178 ASB serum samples eight months post-FMD outbreak in Lao PDR

Table 4.7 Test Se and Sp of 4 NSPE kits on 77 ASB serum samples 20 months post-FMD outbreak in Lao PDR

Table 4.8 Evaluation of Se and Sp in the absence of gold standard for NSPE (Priocheck) and IgA test on 399 serum and saliva samples respectively for the different populations (4-8 months PI).

Table 4.9 Evaluation of the Se and Sp in the absence of gold standard for NSPE (Priocheck) and IgA test on 121 serum and saliva samples respectively for the two different populations (16- 20 Months PI).

Table 5.1 Number of ASB reported to be affected by FMD from 2005-2009
Table 5.2 Estimates of percentage seropositive of 178 ASB serum samples by the four NSP ELISA tests and percent positive of 178 ASB saliva samples by salivary IgA ELISA at eight months PI in Lao PDR.

Table 5.3 Comparing the performance of two tests (Priocheck + IgA ELISA) in ASB at eight months PI from previously infected herds in the Lao PDR cross sectional study.

Table 5.4 Estimates of percentage seropositive of 100 ASB serum samples for the four NSP ELISAs and percent positives of 100 ASB saliva samples by IgA ELISA at four months PI in Ayeyarwaddy Division, Myanmar.

Table 5.5 Comparing the performance of the two tests (Priocheck + IgA ELISA) in Ayeyarwaddy, Myanmar cross sectional study.

Table 5.6 Estimates of FMD percentage seropositivity for 121 ASB serum samples for the four NSPELISAs and and percent positive of 121 ASB saliva samples by IgA ELISA at four months PI in Yangon Division, Myanmar.

Table 5.7 Comparing the performance of two tests (Priocheck + IgA ELISA) in Yangon, Myanmar cross sectional study.

Table 5.8 Estimates of FMD percentage seropositivity of 101 ASB serum samples for the four NSP ELISAs and percent positives of 101 ASB saliva samples by IgA ELISA at eight months PI in Magway division, Myanmar.

Table 5.9 Comparing the performance of two tests (Priocheck + IgA ELISA) in Magway, Myanmar cross sectional study.

Table 5.10 Estimate of percentage positivity by real time RT-PCR against the VI.

Table 6.1 The total numbers of samples collected and tested from the three samplings and the percentage seropositive by four different NSP ELISAs and percentage positive by IgA ELISA.
Table 6.2 Summary estimates of percentage detection of FMDV persistence by NSP ELISA and by salivary IgA ELISA in previously infected ASB in the herd in all three sampling periods in Lao PDR.

Table 6.3 Summary of ASB test results for sequential sampling periods for Priocheck NSP ELISA and salivary IgA ELISA in the Lao PDR longitudinal study shown as number of ASB giving results in this category

Table 6.4 Summary of ASB test results for 3 sequential sampling periods for Priocheck NSP ELISA and salivary IgA ELISA from Lao PDR longitudinal study shown as number of ASB giving results in this category

Table 6.5 Summary estimates of percentage detection of FMDV persistence by NSP ELISA and by salivary IgA ELISA in previously infected ASB in the herd in the three sampling periods in Myanmar.

Table 6.6 Estimates of percentage detection of FMDV persistence by NSP ELISA and by salivary IgA ELISA in ASB from previously infected herds in two sampling periods in Ayeyarwaddy Division, Myanmar.

Table 6.7 Estimates of percentage detection of FMDV persistence by NSP ELISA and by salivary IgA ELISA in previously infected ASB in the herd in three sampling periods in Yangon Division, Myanmar.

Table 6.8 Estimates of percentage detection of FMDV persistence by NSP ELISA and by salivary IgA ELISA in ASB from previously infected herds over two sampling periods in Magway Division, Myanmar.

Table 6.9 Summary of ASB test results for sequential sampling periods for Priocheck NSP ELISA and salivary IgA ELISA in the Ayeyarwaddy Division, Myanmar longitudinal study shown as number of ASB giving results in this category.
Table 6.10 Summary of ASB test results for sequential sampling periods for Priocheck NSP ELISA and salivary IgA ELISA in the Yangon Division, Myanmar longitudinal study shown as number of ASB giving results in this category

Table 6.11 Summary of ASB test results for 3 sequential sampling periods for Priocheck NSP ELISA and salivary IgA ELISA from Yangon Division, Myanmar longitudinal study shown as number of ASB giving results in this category

Table 6.12 Summary of ASB test results for sequential sampling periods for Priocheck NSP ELISA and salivary IgA ELISA in the Magway Division, Myanmar longitudinal study shown as number of ASB giving results in this category
List of Figures

Figure 1.1 OIE status of FMD (2009)

Figure 2.1 Classifications of Picornaviruses

Figure 2.2 Three Dimensional Representation of an FMD particle

Figure 2.3 Icosahedral symmetry of FMDV

Figure 2.4 FMDV capsomere

Figure 2.5 Genome of FMD and proteins produced on replication

Figure 2.6 Map of SEA countries

Figure 2.7 Cytopathic effect (CPE) in FMD-infected cells

Figure 3.1 Sample collection sites

Figure 3.2 Probang cups (Picture from FMD AVIS, 2002)

Figure 3.3 Cleaning process for the probangs with disinfectant bucket (green) and then three separate buckets of clean water in series

Figure 5.1 Lao PDR and Myanmar sampling sites

Figure 5.2 Five year temporal pattern of FMD occurrence in Lao PDR and Myanmar

Figure 5.3 Number of Outbreaks (OB) and Provinces/Divisions Infected (PI) in Lao PDR and Myanmar

Figure 6.1 Sampling sites in Myanmar and Lao PDR

Figure 6.2 Test performances by Bayesian analysis of four different NSP ELISAs and IgA ELISA in ASB in SEA.

Figure 6.3 Phylogenetic trees based on capsid sequences of FMDV showing relationships between Lao PDR serotype A FMDV isolates and other
type A representatives in the world. Viruses from the FMD carriers in ASB are highlighted by the blue circles.

Figure 6.4 FMDV serotypes detected and the percent of samples positive to each FMD serotype by IgA ELISA in Lao PDR three sampling periods.

Figure 6.5 FMDV serotypes detected and the percent of samples positive to each FMD serotype by IgA ELISA in Yangon, Myanmar three sampling periods.

Figure 6.6 Phylogenetic tree based on capsid sequences of FMDV showing relationships between Myanmar serotype O FMDV isolates and other type O representatives worldwide. Viruses from the FMD carrier in ASB are highlighted inside the green circle.

Figure 6.7 Percentage positives by combined Priocheck and IgA ELISA tests over time in previously FMDV infected herds in Lao PDR and Myanmar.
Acknowledgements

My sincere gratitude to my panel of supervisors who have each played a big role for the completion of this study for without their tireless supervision this thesis would not have been possible. I am indebted to both Professor John Edwards, my main supervisor and Dr. Trevor Ellis for their relentless patience, careful reading and correction of the manuscript. I am also thankful to Dr. Moira Desport for her technical inputs, advice and encouragement throughout my thesis writing period. My heartfelt thanks and gratitude to Professor Satya Parida for the patience and technical supervision in my entire laboratory work. Also, I am grateful to Dr. Carolyn Benigno for giving me the chance to do this important study by suggesting this topic to Professor John Edwards. To all of you, thank you for all the support starting from the preparatory to the completion of this thesis, which enabled me to expand my understanding and gain knowledge on FMDV persistence. Thank you also to Associate Professor Ian Robertson for his statistical inputs.

I am also most grateful to the Australian Biosecurity Cooperative Research Centre (AB-CRC) for giving me the scholarship. All my laboratory works and most of my field works were funded by Food and Agriculture Organization (FAO), with the assistance from SEACFMD of the Office International Epizooties (OIE) and the AB-CRC.

All the laboratory works would have not been achieved if not for the highly biosecurity facility of the Institute for Animal Health (IAH), Pirbright Laboratory, United Kingdom. Thank you also to the staff of the FMD Vaccine Differentiation
group, especially to Aravindh Babu for teaching and helping me with the molecular
diagnosis. My special thanks also to the staff of the World Reference Laboratory
(WRL) for FMD especially to Nigel Ferris and Geoff Hutchings for the supply of the
BTY cells and for the FMD antigen detection ELISA tests, to the serology group, to
Dr. Jef Hammond, Head, WRL for FMD and to Dr. David Paton, Head Division of
Epidemiology for allowing me to conduct all my laboratory works in IAH.

This thesis would not have been possible if not for the help of the staff of the
Livestock Breeding and Veterinary Department, Myanmar. Many thanks to Drs.
Than Myint, Khin Maung Latt, Cho Cho Htun, Thet Khaing and to the staff of the
FMD national laboratory. Thank you also to the staff of the National Animal Health
Centre, Department of Livestock and Fisheries, Lao PDR especially to Dr. Phouth
Inthavong and to all his staff at the Lao PDR FMD national laboratory. To the
farmers of Lao PDR and Myanmar, my deepest gratitude and sincere thanks for
allowing me to sampled their animals for the entire study period. Also thank you to
Dr. Ronello Abila and his staff at the OIE SEACFMD, Bangkok, Thailand for all the
assistance given to me during my field works. To my employer, the Bureau of
Animal Industry, thank you very much for relieving me temporarily from my work in
order to do this study.

Thank you also to Dr. Peta Edwards for all the assistance and for being such a nice
councillor to all AB-CRC scholars. To my fellow PhD students and friends at the Vet
transportable office, thank you for the friendship, company and laughter during my
entire study. Lastly, this work is dedicated to my family who have taught and
showed me patience, perseverance and the value of hard work. Thank you guys for
keeping me sane during all these years that I have been away from home.