SIMPLE ARITHMETIC PROCESSING

Fact Retrieval Mechanisms and the Influence of Individual Differences, Surface form, Problem Type and Split on Processing.

by

Natalie Jackson B.A. (Hons.)

This thesis is presented for the degree
Doctor of Philosophy
at Murdoch University

2006
Supervised by
Jeffrey Coney

From the School of Psychology
Murdoch University, Perth, Western Australia

I declare that this thesis is my account of my research and contains as its main content work which has not previously been submitted at any tertiary education institution.
SIMPLE ARITHMETIC PROCESSING

Fact Retrieval Mechanisms and the Influence of Individual Differences, Surface form, Problem Type and Split on Processing.

Natalie Jackson
Murdoch University
PERTH, WESTERN AUSTRALIA

ABSTRACT

Current theorising in the area of cognitive arithmetic suggests that simple arithmetic knowledge is stored in memory and accessed in the same way as word knowledge i.e., it is stored in a network of associations, with simple facts retrieved automatically from memory. However, to date, the main methodologies that have been employed to investigate automaticity in simple arithmetic processing (e.g., production and verification) have produced a wide variety of difficulties in interpretation. In an attempt to address this, the present series of investigations utilised a numerical variant of the well established single word semantic priming paradigm that involved the presentation of problems as primes (e.g., 2 + 3) and solutions as targets (e.g., 5), as they would occur in a natural setting. Adult university students were exposed to both addition and multiplication problems in each of three main prime target relationship conditions, including congruent (e.g., 2 + 3 and 5), incongruent (e.g., 2 + 3 and 13), and neutral conditions (X + Y and 5). When combined with a naming task and the use of short stimulus onset asynchronies (SOAs), this procedure enabled a more valid and reliable investigation into automaticity and the cognitive mechanisms underlying simple arithmetic processing.
The first investigation in the present series addressed the question of automaticity in arithmetic fact retrieval, whilst the remaining investigations examined the main factors thought to influence simple arithmetic processing i.e., skill level, surface form, problem type and split. All factors, except for problem type, were found to influence processing in the arithmetic priming paradigm. For example, the results of all five investigations were consistent in revealing significant facilitation in naming congruent targets for skilled participants, following exposure to Arabic digit primes at the short SOA. Accordingly, the facilitation was explained in terms of the operation of an automatic spreading activation mechanism. Additionally, significant inhibitory effects in incongruent target naming were identified in skilled performance in all of the studies in the present series of investigations. Throughout the course of these investigations, these effects were found to vary with operation, surface form and SOA, and in the final investigation, the level of inhibition was found to vary with the split between the correct solution and the incongruent target. Consequently, a number of explanations were put forward to account for these effects. In the first two investigations, it was suggested that the inhibitory effects resulted from the use of a response validity checking mechanism, whilst in the final investigation, the results were more consistent with the activation of magnitude representations in memory (this can be likened to Dehaene’s, 1997, ‘number sense’). In contrast, the results of the third investigation led to the proposal that for number word primes, inhibition in processing results from the activation of phonological representations in memory, via a reading based mechanism.

The present series of investigations demonstrated the utility of the numerical variant of the single word semantic priming paradigm for the investigation of simple arithmetic processing. Given its capacity to uncover the fundamental cognitive
mechanisms at work in simple arithmetic operations, this methodology has many applications in future research.
ACKNOWLEDGEMENTS

I wish to acknowledge and sincerely thank my supervisor, Dr Jeff Coney, for his guidance. He has been an invaluable source of knowledge, encouragement, and support throughout the course of this research and the preparation of this thesis. I cannot imagine a better supervisor or friend.

I would also like to thank my family, Matthew, Jessica and Rebecca, and my parents, Catherine and Danny Tenardi, for their patience, and caring love and support over the years.

Special thanks also go to Dr Suzanne Dziurawiec, Shiree Treleaven-Hassard, and Marley Thompson for their humour, support and encouragement.
CONTENTS

LIST OF ORIGINAL PUBLICATIONS

1. INTRODUCTION
 1.1 Overview
 1.2 Review of Research and Current Understanding
 1.2.1 The Organization of Simple Arithmetic Knowledge and Access to this Information
 1.2.2. Individual Differences in Access to Simple Facts
 1.2.3 Surface Form Effects: Encoding or Fact Retrieval?
 1.2.3.1 Common Pathway Models
 1.2.3.2 Separate Pathways: The Encoding Complex Hypothesis
 1.2.3.3 Simple Arithmetic and the Encoding Issue
 1.2.3.4 Summary
 1.2.4 Problem Type Effects: Encoding or Fact Retrieval?
 1.2.5 Split Effects in Priming Tasks
 1.3 The Single Word Semantic Priming Paradigm
 1.3.1 Priming Mechanisms
 1.3.2 Methodological Considerations
 1.4 The Present Priming Procedure
 1.4.1 The Benefits of Using the Priming Paradigm
 1.5 Aims

2. THE PRESENT INVESTIGATIONS
 2.1. The Question of Automaticity.
 2.2. Individual Differences in Automaticity.
 2.3. Surface Form Effects in a Priming Task.
 2.4. Does Problem Type Influence Fact Retrieval Mechanisms?
 2.4.1 Analysis of Data Collapsed Across Problem Type
 2.4.2 Problem Type Analysis
 2.5. The Reversed Split Effect.

3. DISCUSSION
 3.1 Arithmetic Processing in the Priming Paradigm.
 3.2 Individual Differences in Processing.
 3.3 Surface Form Effects.
 3.4 Direct Access to Different Problem Types.
 3.5 The Split Effect.
 3.6 The Cognitive Mechanisms Underlying Simple Arithmetic Processing
 3.6.1 Automatic Spreading Activation
 3.6.2 Inhibitory Mechanisms
 3.6.2.1 The Response Validity Checking Mechanism
 3.6.2.2 Number Word Problems and Reading Mechanisms
 3.6.2.3 Arabic Digit Problems and ‘Number Sense’
 3.6.2.4 Summary and Conclusions
 3.7 Future Research.
 3.7.1 Directions for Further Theoretical Enquiry
 3.7.1.1 Investigations Stemming from the Present Research
 3.7.1.2 Operation Differences in Cognitive Processing
3.7.1.3 Improving the Arithmetic Priming Methodology
3.7.2 Directions for Applied Research
 3.7.2.1 Educational Practice
 3.7.2.2 The Remediation of Disordered Arithmetic Skills

3.8 Conclusion

4. REFERENCES
LIST OF ORIGINAL PUBLICATIONS

This thesis comprises the following publications:

