Epidemiology of Foot and Mouth Disease in Cattle In Pahang, Malaysia.

Jamaliah Binti Senawi
Research Masters with Training (RMT)

School of Veterinary and Biomedical Sciences
Faculty of Health Sciences
Murdoch University
Western Australia

This thesis is presented for the Research Masters (with training) of Murdoch University

2012
Declaration

I declare this thesis is my own account of my research and contains as its main content, work which has not been previously submitted for a degree at any other tertiary educational institution.

Jamaliah Binti Senawi
Abstract

Foot-and-mouth disease (FMD) is one of the most contagious diseases of domestic and wild cloven-hoofed animals. The disease has a significant negative impact on the economy of affected countries through reduced livestock productivity and loss of markets. In Pahang, Malaysia a severe outbreak of FMD started in December 2003, after approximately 18 years of freedom from the disease. The FMDV strain O was identified as the cause of this outbreak. The study reported in this thesis focused on three areas of epidemiology of FMD and was designed to: determine the temporal and spatial distribution and pattern of outbreaks of FMD in Pahang; identify the risk factors associated with the occurrence of FMD in Pahang; and determine the antibody response in local cattle following vaccination against FMD.

Although vaccination is adopted as a control measure for FMD in Pahang, the findings of this study indicated that only half (56%) of the respondents believed in vaccination as a preventive measure for FMD with only 37.3% of respondents correctly explaining how the disease spreads. Unfortunately only 29% of the respondents knew that the vaccine needed to be given at six monthly intervals and no one knew that a second priming dose was required to be administered one month after the primary dose. Antibody conferred after vaccination was significantly higher in animals which had been multiply vaccinated than in animals which received their first vaccination. There was evidence that vaccination stimulated a serological immunity; however the immunity, in many cases, was not sufficient to protect
against natural infection. In addition the NSP test indicated 7 animals (5 cows and 2 calves) were positive during the eleven month study period, although no clinical evidence of FMD had ever been seen on the farm.

Three variables (factors) were found to be associated with FMD in Pahang after a multivariable logistic regression analysis. The most strongly associated factor was retaining seropositive animals in the herd ($P=0.006$; OR=3.62; 95% CI 1.44, 9.11). Cattle farmers who kept other livestock were more likely ($P=0.003$; OR 3.2; 95% CI 1.47, 7.07) to have an infected FMD herd than owners who didn’t keep other species of livestock. Farmers which allowed the entry of unauthorised vehicles onto their farmland were also more likely to have an infected herd ($P=0.05$; OR = 2.2; 95% CI 1.0, 4.82).

The spatio-temporal distribution of FMD outbreaks in Pahang during the period from the 16th December 2003 to the 26th August 2006 was assessed using a Space – Time permutation model. This indicated there were five significant distinctive clusters with no geographical overlap in the secondary clusters for the whole study period. Clusters were identified in the east, west and middle of Pahang with the observed to expected ratio of FMD outbreaks within the spatial temporal clusters being between 2.39 and 17.78. The temporal pattern of the FMD outbreaks in Pahang appeared to be seasonal occurring during the rainy season which coincided with “Hari Raya Korban” when many live cattle are moved throughout the country. The present study provided valuable information for the development of an effective control and eradication program for FMD in the state of Pahang, Malaysia.
TABLE OF CONTENTS

Declaration
Abstract
Table of Contents
List of Tables
List of Figures
Acknowledgements
Abbreviations

CHAPTER 1 – INTRODUCTION, BACKGROUND INFORMATION AND LITERATURE REVIEW

1.1 INTRODUCTION
1.2 BACKGROUND INFORMATION
 1.2.1 Malaysia and the history of Foot and Mouth Disease
 1.2.2 History of Foot and Mouth Disease in Pahang
 1.2.3 Cattle Management in Pahang
1.3 FOOT AND MOUTH DISEASE
 1.3.1 Aetiology
 1.3.2 Epidemiology
 1.3.2.1 Host species
 1.3.2.2 Transmission
 1.3.2.3 Incubation period
 1.3.2.4 Survival on fomites
 1.3.2.5 Carrier state
 1.3.3 Diagnosis
 1.3.3.1 Clinical Diagnosis
 1.3.3.2 Virological Diagnosis
 1.3.3.2.1 Viral isolation
 1.3.3.2.2 Immunological methods
1.3.3.2.1 Complement Fixation Test (CFT) and Antigen Capture ELISA
1.3.3.2.2 Nucleic acid recognition
1.3.3.2.3 Field tests
1.3.3.3 Serological Diagnosis
1.3.3.3.1 Testing antibody to structural proteins
1.3.3.3.1.1 Virus neutralization test (VNT)
1.3.3.3.1.2 Enzyme linked immunosorbent assay (ELISA)
1.3.3.3.2 Testing antibody to non-structural proteins
1.3.3.3.2.1 Agar gel Immunodiffusion test
1.3.3.3.2.2 Latex agglutination
1.3.3.3.2.3 Immunoelectro transfer blot analysis
1.3.3.3.3 Non Structural Protein (NSP) ELISA
1.3.4 Control of FMD
1.3.4.1 Vaccination
1.3.4.2 Movement Restrictions
1.3.4.3 Stamping out
1.3.4.4 Application of Models
1.3.5 Disease Distribution
1.4 Overview of the current study

CHAPTER 2 - GENERAL MATERIALS AND METHODS

2.1 Serological tests for measurement of antibodies against FMD
2.2 Test for antibody against non-structural proteins
2.2.1 Post- vaccination evaluation test
2.2.2 Statistical and Descriptive analysis
CHAPTER 3 - RISK FACTOR ANALYSIS ASSOCIATED WITH FOOT AND MOUTH DISEASE IN THE STATE OF PAHANG, MALAYSIA.

3.1 Introduction

3.2 Materials and methods
- **3.2.1 Study Area**
- **3.2.2 Study design**
- **3.2.3 Questionnaires**
- **3.2.4 Data analysis**

3.3 Results
- **3.3.1 Descriptive analysis**
- **3.3.2 Univariable analysis**
- **3.3.3 Multivariable analysis**

3.4 Discussion

CHAPTER 4 - ANTIBODY RESPONSE FOLLOWING VACCINATION AGAINST FOOT AND MOUTH DISEASE

4.1 Introduction

4.2 Materials and methods
- **4.2.1 Vaccination and sample collection**
- **4.2.2 Measurement of antibody to NSPs**
- **4.2.3 Measurement of antibody on the Liquid phase blocking ELISA**
- **4.2.4 Statistical analysis**

4.3 Results
- **4.3.1 Detection of antibodies against FMDV NS-Proteins**
- **4.3.2 Liquid phase blocking ELISA**

4.4 Discussion

5.1 Introduction \hfill 84
5.2 Materials and methods \hfill 85
 5.2.1 Study area and study period \hfill 86
 5.2.2 Data source and case definition \hfill 86
 5.2.3 Spatiotemporal analysis \hfill 87
5.3 Results \hfill 88
5.4 Discussion \hfill 93

CHAPTER 6 - GENERAL DISCUSSION AND CONCLUSIONS \hfill 98

Appendix 1 \hfill 109
 Non-structural Protein (NSP) test : Ceditest procedure \hfill 109
Appendix 2 \hfill 114
 Liquid phase blocking ELISA test procedure \hfill 114
Appendix 3 \hfill 131
 Survey on the possible risk factors contributing to Foot and Mouth Disease in the state of Pahang, Malaysia

REFERENCES \hfill 141
LIST OF TABLES

Table 3.1 Univariable analyses of putative risk factors for foot and mouth disease in cattle in Pahang 48
Table 3.2 Univariable analyses of potential continuous risk factors for FMD in cattle in the state of Pahang. 51
Table 3.3 Multivariable analysis of potential risk factors for foot and mouth disease in cattle in Pahang. 53
Table 4.1 Number of cows and calves positive to the NSP test throughout the study 65
Table 4.2 Number of NSP positive samples in the non-revaccinated and revaccinated cows 66
Table 4.3 Number of NSP positive animals in the non-revaccinated and revaccinated calves 67
Table 4.4 Comparison between cow and calf groups after animals were divided at 183 DPV into a revaccinated and a non-revaccinated group. 67
Table 4.5 NSP results for individual cows during the study 68
Table 4.6 NSP result for individual calves during the study 69
Table 5.1 Spatio-temporal clusters detected by the spatial scan permutation model for 342 FMD outbreak locations in the state of Pahang from 16 December 2003 to 26 August 2006. 92
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Location of Malaysia and its FMD status</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Cattle in an oil palm plantation</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Different types of FMD diagnosis</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Cattle kept together with goats</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>LPB ELISA results for serotype O in cows</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>LPB ELISA results for serotype A in revaccinated and non-revaccinated cows.</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>LPB ELISA results for serotype Asia 1 in revaccinated and non-revaccinated cows.</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>LPB ELISA results for serotype O in revaccinated and non-revaccinated calves.</td>
<td>75</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>LPB ELISA results for serotype A in revaccinated and non-revaccinated calves.</td>
<td>76</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>LPB ELISA results for serotype Asia 1 in revaccinated and non-revaccinated calves.</td>
<td>77</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Number of cases of FMD recorded between 16th December 2003 to 26th August 2006</td>
<td>89</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Geographical distribution of outbreaks of FMD in the state of Pahang that were reported to the DVS during the period 16th December 2003 to 26th August 2006. Each red dot represents a reported outbreak.</td>
<td>90</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Location of the spatio-temporal clusters. Cluster E is considered the primary cluster.</td>
<td>93</td>
</tr>
</tbody>
</table>
I would like to express my gratitude to the Malaysian Government for the sponsorship and Department of Veterinary Services, Malaysia for giving me the precious opportunity to further my study at Murdoch University, Australia.

This thesis would not been completed without the help of my supervisor Professor Ian Robertson who has guided me with patience and encouragement.

My special thanks are given to personnel at the FMD laboratory Malaysia; Dr Norlida Othman, Mr Daud and Mr Madzahan. Pahang State DVS staff, especially Mr Ahmad Zainal and all the District officers and staff at PTH Ulu Lepar especially Mdm Hajjah Joseliana for their kind assistance during my study.

I greatly appreciate my parents, children (Hakim, Anis and Alya), sisters and brother for their unconditional love, understanding and great help in many ways throughout my study.

I would also give my special thanks to Siti Zubaidah and Aida for their help and encouragement and all my friends who enriched my stay in Australia especially Wan Sofiah.

Finally I would like to dedicate this thesis to someone I love, for all the beautiful memories and happiness he left.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AVO</td>
<td>Assistant Veterinary Officer</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>DPV</td>
<td>Days post vaccination</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FMD</td>
<td>Foot and Mouth Disease</td>
</tr>
<tr>
<td>FMDV</td>
<td>Foot and Mouth Disease Virus</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>LPBE</td>
<td>Liquid Phase Blocking ELISA</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>NSP</td>
<td>Non Structural Protein</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OIE</td>
<td>Office International des Epizooties</td>
</tr>
<tr>
<td>OPD tablets</td>
<td>Ortho-Phenylenediamine</td>
</tr>
<tr>
<td>PI</td>
<td>Percentage of Inhibition</td>
</tr>
<tr>
<td>PTH</td>
<td>Pusat Ternakan Haiwan</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RVL</td>
<td>Regional Veterinary Laboratory</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical package for the Social Sciences</td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>WRL</td>
<td>World reference laboratory</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight in volume</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume in volume</td>
</tr>
<tr>
<td>VIF</td>
<td>Variable Inflation factor</td>
</tr>
<tr>
<td>χ^2</td>
<td>Chi square</td>
</tr>
</tbody>
</table>