Spinal pain and postural sway.

Is there a relationship?

By

Alexander Ralph Ruhe

Master of Chiropractic
Anglo-European College of Chiropractic
Bournemouth, England

This thesis is presented for the degree of

Doctor of Philosophy

of

Murdoch University
Perth, Western Australia

October 2011
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

[Signature]

Alexander Ralph Ruhe
ABSTRACT

Postural stability is an important component in maintaining upright stance and balance during normal daily movements and activities. Postural stability is also an important factor in the elderly where balance disability may increase the risk of falls and subsequent injury. In sport, problems with balance may lead to serious injuries. Thus, postural stability has important implications in rehabilitation and sports.

Many different methods exist today for assessing postural sway. Centre of pressure (COP) evaluation is a frequently used method of measuring this stability and gain insights into potential pathological mechanisms e.g. in association with pain. This is possible as the COP signal is proportional to ankle torque, a combination of descending motor commands as well as mechanical properties of the musculature around.

Over the last decades, postural sway has been most commonly evaluated by using spatial measures such as sway distance, velocity and area traversed based upon sequential locations of the COP in the plane of the force platform. However, despite its common usage, important clinical aspects of the COP measurements such as its potential suitability for clinical monitoring purposes in pain patients remained unaddressed. Several literature reviews were conducted that identified relevant gaps in current knowledge to focus our research.

This led to the following primary research questions:

 a) Can a best evidence experimental setup be identified that is suitable for spinal pain sufferers?
 a) Is there a relationship between pain intensity and the COP excursions?
 b) Are there alterations in postural sway associated with diminishing pain?
Based on a systematic review of the literature the following experimental protocol was developed: Three measurements of 90sec each were conducted in bipedal narrow stance with closed eyes at a sampling frequency of 100Hz. We selected the COP parameters 90% circle diameter as a descriptor of sway area and mean sway velocity as it has shown its discriminative value for various pain conditions.

The prospective part of this thesis was preceded by pilot studies that confirmed the excellent reliability of the selected experimental setup for mean sway velocity in antero-posterior (AP) and the medio-lateral (ML) direction (ICC\textsubscript{2,k} 0.85-0.89, 95\% CI 0.63-0.97, SEM 0.66-0.78) and 90\% circle diameter (ICC\textsubscript{2,k} 0.80, 95\% CI 0.54-0.94, SEM 0.89). Later on, very similar values were observed for sway data obtained from the symptomatic groups.

The experimental setup was found to be safe and a sub-sample of predominantly low back pain patients (n=20) reported no difficulties complying with the postural tasks involved. Furthermore, no effects of learning or fatigue could be demonstrated in 10 healthy individuals either during inter-session (10 consecutive measurements) or intra-session (three times 3 measurements at 2-3 day intervals). No adverse incidents associated with the measurements occurred in approximately 1500 measurements.

By enrolling age matched healthy individuals as a control group (n=77), reference values for the included COP parameters were established to which all subsequent data obtained from symptomatic individuals could be compared.

A total of 210 patients were enrolled subdivided into three groups for non-specific neck, mid back and low back pain. A physical examination was conducted for all pain sufferers, who were asked to rate their pain intensity on a NRS-11 scale. The associated disability was assessed by means of the Disability Rating Index. Depending on the reported severity of their
complaint, the symptomatic individuals were subdivided into seven pain intensity groups (NRS 2-8) for each of the painful regions: low back (n=77, n=11/group), mid back (n=63, n=9/group) and neck (n=70, n=10/group).

The symptomatic participants exhibited greater postural sway than healthy controls. As a general trend, a statistically significant increase was reached beginning at about NRS score 4 for all three pain regions. Depending on the COP parameter and painful region, significant differences between individual NRS levels were reached about every 2-3 NRS levels.

Significant differences in COP excursions between mid back, low back and neck pain sufferers could be identified. However, in the light of the expected inter-subject variability in pain perception as well as the low number of participants per NRS group this conclusion warrants caution.

A major finding from a univariate regression analysis was a linear relationship between pain intensity and the COP parameters (p<0.001) for all painful regions, while a multivariate regression analysis showed that other variables such as age, gender, height, weight and BMI did not have a statistically significant effect on postural sway.

This close relationship was maintained even with diminishing pain levels after a course of manual therapy treatments conducted in a group of low back (n=38) and neck pain patients (n=36). In this instance three measurements and interventions were performed at 3-4 day intervals. With few exceptions, the follow-up COP measures in connection with specific pain intensities did not show a significant difference in postural sway compared to reference values for identical NRS levels at baseline.
In addition, a similar linear relationship between pain intensity, the COP sway parameters and the patient's disability ratings was identified for all painful regions.

At the same time, a clear trend towards predominant sway in the medio-lateral direction was observed with increasing pain intensities, until 70% of sway occurred in ML direction at NRS score 8. In comparison, healthy controls showed a nearly equal sway distribution between AP (52%) and ML (48%) direction.

In the absence of learning effects, the reduced COP excursions with decreasing NRS scores in subacute and chronic pain sufferers further suggests that pain interference rather than long-term neuro-physiological adaptations (such as central sensitization) are the primary causative factor for increased sway.

Our findings may have clinical implications for COP measures in patients with significant pain. These include routine sway analyses as an objective outcome measure during the rehabilitation and treatment process. It also stresses the importance of an initial focus on pain regulation rather than proprioceptive training.
ACKNOWLEDGEMENTS

My path towards undertaking and completing a higher qualification by research has been reinforced and received direction and support from a wide range of individuals along the way.

Since undertaking the studies towards this PhD, my supervisors were a tremendous source of knowledge, energy and support. Dr Bruce Walker from the School of Chiropractic and Sports Science at Murdoch University and Dr René Fejer from the Spine Centre of Southern Denmark and University of Southern Denmark provided me with high levels of autonomy and yet they were always available as sources of information. Especially with Dr Fejer the "quick chat" we would arrange were sure to turn into an in-depth discussion lasting for hours into the night. In these years both have provided a strong research methods background, coupled with a keen analytical approach to the research questions investigated as well as an extremely valuable critique of all my written material. At the same time, they also reminded and encouraged me not to disregard my private life, especially during the rather frantic later stages towards completion. The combination of these two supervisors, both with different styles and approaches to the rigors of completing a PhD, has provided an excellent basis to further develop from this point and I am deeply grateful for this. While they contributed greatly, I bear full responsibility for the content of this thesis and any mistakes associated with it.

The Praxis für Chiropraktik Wolfsburg provided a highly supportive environment which allowed the combination of clinical work and research activity. The thesis would not have been possible without the help of my colleagues Alexander Steinbrenner DC and Tino Bos DC who provided a room for the measurements, helped with the literature search and conducted the physical examinations, patient documentations and treatments during the prospective part of this thesis.
In addition, I am very grateful for the invaluable and essential support by the clinic staff during the process of patient recruitment. Each of them agreed to spend additional time in clinic copying and distributing information material and in doing so, they freed up valuable time for me to pursue other tasks associated with the conduct of the experiments.

External assistance also contributed to this project and I am indebted to the reviewers of the publications arising from this project. Based on long experience in the field of postural sway analysis, their valuable input added depth to the discussions and further strengthened the final manuscript of this thesis.

Another important source of support was my family. While not being directly involved in the conduct of this thesis, they contributed substantially by simply listening to my thoughts when I constantly developed and dismissed new ideas, offering encouragement and giving me the feeling that they were with me along the way. My father and sister also shared anecdotes from their own experience completing research doctorates that were both inspiring and reassuring.

Finally, I thank my wife Sina for encouraging, supporting and enduring my endeavors over these past years. I cannot count the times I apologized for my absence of thought and moods when I returned once again late and exhausted. At the same time, there has been nothing better than coming home after a long day of clinic and research when things have not always gone well, knowing that a welcoming reception will be given and that the day’s problems will soon be put into context and perspective. Sina, you have provided me with tremendous support and inspiration and I believe it is fair to say that I would not have reached this point without you.
PUBLICATIONS ARISING FROM THIS THESIS

Papers

Posters and Abstracts

Ruhe A, Fejer R, Walker BF. Inter- and intrasession effects of learning and fatigue on center of pressure measures in healthy individuals. European Chiropractors' Union, ECU Convention, 02-04 June 2011, Zurich, Switzerland.

Ruhe A, Fejer R, Walker BF. Associations between non-specific manual interventions and the magnitude of COP excursions in NSLBP patients. European Chiropractors' Union, ECU Convention, 02-04 June 2011, Zurich, Switzerland.

Ruhe A, Fejer R, Walker BF. Inter- and intrasession effects of learning and fatigue on center of pressure measures in healthy individuals. Chiropractors and Osteopaths College of Australasia, 10th Biennial Conference, 8-9 October 2011, Melbourne, Australia.

Podium presentations

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>VII</td>
</tr>
<tr>
<td>Publications</td>
<td>IX</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>XIII</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>XXX</td>
</tr>
<tr>
<td>List of Figures</td>
<td>XXXIII</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XXXVIII</td>
</tr>
<tr>
<td>List of Formulae</td>
<td>XLIII</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1. Background 1
1.2. Definitions of center of pressure and center of mass 3
1.3. Postural control in quiet stance 4
 1.3.1. Ankle strategy and hip strategy 7
 1.3.2. Passive control and active postural control 8
 1.3.3. Feedback and feedforward control mechanisms 14
 1.3.4. Summary 17
1.4. Force platforms 18
 1.4.1. Brief historical background 18
 1.4.2. How force platforms work 18
 1.4.2.1. Piezoelectric systems 18
 1.4.2.2. Strain gauge based systems 19
1.5. Obtaining COP measures 21
1.6. The Metitur GB 300 22
Chapter 2 The test-retest reliability of COP measures in bipedal static task conditions

2.1. Background
2.2. Aims
2.3. Methods
 2.3.1. Search strategy
 2.3.2. Selection criteria
 2.3.3. Data extraction and management
 2.3.4. Assessment of methodological procedures
2.4. Results
 2.4.1. Literature search results
 2.4.2. Study results
 2.4.2.1. Characteristics of participants and methods
 2.4.2.2. The statistical analysis
 2.4.2.3. Relationships between methods and reliability
2.5. Discussion
 2.5.1. General considerations
 2.5.2. Choice of statistics
 2.5.3. Subject demographics and morphology
 2.5.4. Age and gender
 2.5.5. COP parameters
Chapter 3 Center of pressure excursion as a measure of balance performance during bipedal static tasks conditions in patients with non-specific low back pain

3.1. Background 61
3.2. Methods 63
 3.2.1. Search strategy 63
 3.2.2. Electronic searches 64
 3.2.3. Searching other resources 64
 3.2.4. Selection criteria 64
 3.2.5. Data extraction and management 65
 3.2.6. Assessment of methodology 66
3.3. Results 66
 3.3.1. Literature search results 66
 3.3.2. Study results 67
 3.3.2.1. Characteristics of participants and methods 67
 3.3.2.2. Reliability of COP data 70
3.3.2.3. Pain characteristics 72
3.3.2.4. Pain assessment 72
3.3.2.5. Low back pain and postural sway 73
3.3.2.6. The contribution of visual information 74
3.3.2.7. Sampling duration 75
3.3.2.8. Disability assessment 75

3.4. Discussion 76
3.4.1. Clinical application of COP measures 79

3.5. Conclusion 81

3.6. Strengths and limitations 82

Chapter 4 83
Altered postural sway in patients suffering from non-specific neck pain and whiplash associated disorder - A systematic review of the literature

4.1. Background 84
4.2. Methods 85
4.2.1. Search strategy 85
4.2.2. Electronic searches 86
4.2.3. Searching other sources 86
4.2.4. Selection criteria 86
4.2.5. Data extraction and management 87
4.2.6. Assessment of methodology 88

4.3. Results 88
4.3.1. Literature search results 88
4.3.2. Study results 89
4.3.2.1. Characteristics of participants and methods 89
4.3.2.2. Reliability of COP data 94
4.3.2.3. Pain assessment and physical examination 95
4.3.2.4. Neck pain and postural sway 96
4.3.2.5. Disability assessment 97
4.4. Discussion 97
4.4.1. Clinical considerations 100
4.4.2. Limitations 101
4.5. Conclusion 101

Chapter 5 The association between therapeutic interventions and postural stability – a literature review
5.1. Background 104
5.2. Methodology 105
5.3. Results 106
5.3.1. Study results 106
5.3.2. Characteristics of participants and methods 107
5.3.3. Changes in COP associated with manual therapeutic interventions 107
5.4. Discussion 111
5.5. Conclusion 113

Chapter 6 Comprehensive methodology 114
6.1. Material 115
6.2. Recruitment of participants, patient information and declaration of consent 116
6.2.1. Patient recruitment procedures 116
6.2.2. Information letter for potential participants 118
6.2.3. Cross-cultural translation 119
6.2.4. Patient’s rights 120
6.2.5. Complaints procedures 120
6.2.6. Confidentiality 121
6.2.7. Obtaining consent 122

6.3. General procedures 122
6.3.1. Location and positioning of equipment 122
6.3.2. Calibration process 123
6.3.3. Safety and on-site assistance 123
6.3.4. Emergency medical care 124
6.3.5. Adverse incidents reporting 125
6.3.6. Data storage and safety 125

6.4. Experimental procedures 126
6.4.1. Flow of procedures and recordings 126
6.4.2. Health Questionnaire 127
6.4.3. Disability assessment 128
 6.4.3.1. The Disability Rating Index 129
 6.4.3.2. Translation process 130
6.4.4. Physical examination 132
6.4.5. Range of motion 132
6.4.6. Joint and soft tissue palpation 135
6.4.7. Orthopedic tests 135
 6.4.7.1. Cervical spine 135
 6.4.7.2. Lumbar spine and sacroiliac joint 137
6.4.8. Neurological tests 139
Chapter 7 | Reliability pilot study | 145

7.1. Intra-session reliability of center of pressure measures in bipedal static stance using the Metitur Good Balance GB300 system

7.1.1. Background | 146
7.1.2. Methods | 146
7.1.2.1. Participants | 146
7.1.2.2. Material and procedures | 147
7.1.2.3. Data analysis | 148
7.1.3. Results | 150
7.1.4. Discussion | 155
7.1.4.1. Selection of COP parameters for future studies | 157
7.1.5. Conclusions | 158
7.1.6. Limitations | 158
Feasibility pilot study

7.2. Feasibility pilot study
 7.2.1. Background
 7.2.2. Materials and methods
 7.2.2.1. Participants
 7.2.2.2. Procedures
 7.2.3. Statistical analysis
 7.2.4. Results
 7.2.4.1. Participants
 7.2.4.2. Responses
 7.2.5. Discussion
 7.2.6. Conclusions

Sample size calculations

7.3. Sample size calculations for symptomatic regions
 7.3.1. Background
 7.3.2. Neck (Region 1)
 7.3.3. Mid-back (Region 2)
 7.3.4. Low back and pelvis (Region 3)
 7.3.5. Conclusion

Chapter 8 Inter- and intrasession effects of learning and fatigue on COP measures in healthy individuals

8.1. Background
8.2. Materials and methods
 8.2.1. Participants
Prospective observational study

Chapter 9
Is there a relationship between pain intensity and body sway in patients with non-specific low back pain?

9.1. Background 187
9.2. Materials and methods 187
 9.2.1. Participants 188
 9.2.2. Procedures 189
9.3. Data analysis 191
 9.3.1. Reliability 191
 9.3.2. Pain intensity and COP excursions 191
 9.3.2. Main sway direction 192
9.4. Results 192
 9.4.1. Participants 192
 9.4.2. Reliability 194
9.4.3. Learning effects 194
9.4.4. Age groups 195
9.4.5. Differences in postural sway between pain sufferers and controls 195
9.4.6. Relationship between pain intensity and postural sway 196
9.4.7. Regression analysis 200
9.4.8. Main sway direction 201
9.5. Discussion 201
 9.5.1. Clinical considerations 206
 9.5.2. Limitations 208
9.6. Conclusion 209

Chapter 10 On the relationship between pain intensity and body sway in patients with non-specific neck pain 210
10.1. Background 211
10.2. Materials and methods 212
 10.2.1. Participants 212
 10.2.2. Procedures 212
10.3. Data analysis 213
 10.3.1. Reliability 213
 10.3.2. Pain intensity 213
 10.3.3. Main sway direction 214
10.4. Results 214
 10.4.1. Participants 214
 10.4.2. Reliability 215
 10.4.3. Relationship between pain intensity and postural sway 216
10.4.4. Regression analysis

10.4.5. Main sway direction

10.5. Discussion

10.5.1. Clinical considerations

10.5.2. Strengths and Limitations

10.6. Conclusions

Chapter 11 On the relationship between pain intensity and body sway in patients with non-specific mid-back pain

11.1. Background

11.2. Materials and methods

11.2.1. Participants

11.2.2. Procedures

11.3. Data analysis

11.3.1. Reliability

11.3.2. Pain intensity and postural sway

11.3.3. Main sway direction

11.4. Results

11.4.1. Participants

11.4.2. Reliability

11.4.3. Relationship between pain intensity and postural sway

11.4.4. Regression analysis

11.4.5. Main sway direction

11.5. Discussion

11.5.1. Clinical considerations

11.5.2. Strengths and Limitations
Chapter 12 On the differences in COP excursions between patients with non-specific low back, mid back and neck pain - a comprehensive overview

12.1. Background
12.2. Materials and methods
12.3. Data analysis
12.4. Results
 12.4.1. Participants
 12.4.2. Pain intensity
 12.4.3. Main sway direction
12.5. Discussion
12.6. Conclusions

Chapter 13 Is there a relationship between disability and body sway in patients with non-specific neck or low back pain?

13.1. Background
13.2. Materials and methods
 13.2.1. Participants
 13.2.2. Disability assessment
 13.2.3. Procedures
13.3. Data analysis
 13.3.1. Disability
13.4. Results
 13.4.1. Participants
13.4.2. Relationship between physical disability and postural sway

13.4.2.1. Non-specific low back pain patients

13.4.2.2. Non-specific neck pain patients

13.4.2.3. Non-specific mid-back pain patients

13.4.3. Regression analysis

13.4.3.1. COP excursions, pain and disability scores of NSLBP patients

13.4.3.2. COP excursions, pain and disability scores of NSNP patients

13.4.3.3. COP excursions, pain and disability scores of NSMBP patients

13.5. Discussion

13.6. Strengths and limitations

13.7. Conclusions

Chapter 14

Is there a relationship between pain and the magnitude of COP excursions following non-specific manual interventions in patients with non-specific low back pain?

14.1. Background

14.2. Materials and methods

14.2.1. Participants

14.2.2. Measurement equipment

14.2.3. Procedures

14.2.4. Data analysis

14.3. Results
14.3.1. Participants 273
14.3.2. Pain intensity over the course of three therapeutic interventions 275
14.3.3. Relationship between pain intensity and postural sway 276
14.4. Discussion 285
14.4.1. Clinical considerations 289
14.4.2. Limitations 289
14.5. Conclusions 290

Chapter 15 On the relationship between altered pain levels following non-specific manual interventions and the magnitude of COP excursions in patients with non-specific neck pain 291
15.1. Background 292
15.2. Materials and methods 292
 15.2.1. Participants 292
 15.2.2. Procedures 293
 15.2.3. Data analysis 293
15.3. Results 293
 15.3.1. Participants 293
 15.3.2. Pain intensity over the course of three therapeutic interventions 295
 15.3.3. Relationship between pain intensity and postural sway 296
15.4. Discussion 305
 15.4.1. Limitations 307
15.5. Conclusions 307
Chapter 16
Adverse effects associated with conducting COP measurements and the administration of multimodal therapeutic interventions

16.1. Background
16.2. Methods
 16.2.1. Data collection
 16.2.2. Data analysis
16.3. Results
 16.3.1. Forceplate measurements
 16.3.2. Therapeutic intervention
16.4. Discussion
16.5. Conclusions

Chapter 17
Discussion and conclusions

17.1. Introduction
17.2. Aspects of data acquisition
17.3. Pain and postural sway
17.4. Applying the results in research and clinical practice
17.5. Prospects for future studies
17.6. Conclusions

Appendices

1 Ethics Approval 2010/066 - Pilot Studies
2 Ethics Approval 2010/173 - Prospective Study
3 Information letter for prospective healthy controls in Pilot and prospective studies (English version)
4 Information letter for potential participants in the feasibility pilot study (English version) 330
5 Consent form for all participants (English version) 332
6 Examination sheet 333
7 Health questionnaire (English version) 334
8 Original Disability Rating Index (DRI) and cover page (English version) 337
9 Follow-up assessment form (English version) 340
10 Information letter for prospective participants in the reliability pilot study (German version) 344
11 Information letter for potential participants in the feasibility pilot study (German version) 346
12 Consent form for all participants (German version) 348
13 Health Questionnaire (German version) 349
14 Modified Disability Rating Index (DRI) and cover page (Modified German version) 352
15 Follow-up questionnaire (German version) 355

Bibliography 359

Attachments 401

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D</td>
<td>analogue-to-digital</td>
</tr>
<tr>
<td>AMTI</td>
<td>Advanced Mechanical Technology Incorporated</td>
</tr>
<tr>
<td>AP</td>
<td>anterior-posterior</td>
</tr>
<tr>
<td>ART</td>
<td>active release technique</td>
</tr>
<tr>
<td>BBS</td>
<td>Berg balance scale</td>
</tr>
<tr>
<td>BOS</td>
<td>base of support</td>
</tr>
<tr>
<td>C</td>
<td>compliant surface (on force platform)</td>
</tr>
<tr>
<td>CI</td>
<td>95% confidence interval(s)</td>
</tr>
<tr>
<td>CLBP</td>
<td>chronic low back pain</td>
</tr>
<tr>
<td>COP</td>
<td>center of pressure</td>
</tr>
<tr>
<td>COM</td>
<td>center of mass</td>
</tr>
<tr>
<td>COG</td>
<td>center of gravity</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>DCG</td>
<td>German Chiropractors' Association</td>
</tr>
<tr>
<td>DFA</td>
<td>detrended fluctuation analysis</td>
</tr>
<tr>
<td>d or dist</td>
<td>distance</td>
</tr>
<tr>
<td>DRI</td>
<td>disability rating index</td>
</tr>
<tr>
<td>DSN</td>
<td>diabetic sensory neuropathy</td>
</tr>
<tr>
<td>EC</td>
<td>eyes closed</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyography</td>
</tr>
<tr>
<td>EO</td>
<td>eyes open</td>
</tr>
<tr>
<td>F</td>
<td>firm surface (on force platform)</td>
</tr>
<tr>
<td>FABQ</td>
<td>fear avoidance belief questionnaire</td>
</tr>
</tbody>
</table>
FD fractal dimension

g gravity

GC generalizability coefficient

GF gauge factor

GRF ground reaction force

H Hurst-component

HVLA high velocity, low amplitude (manipulative thrust)

ICC intra-class correlation coefficient

L length

LB large base (forceplate)

LBP low back pain

LEI lower limb injury

$M_{x,y,z}$ moments acting on the platform

ML medio-lateral

MMDC minimal metrical detectable change

mod moderate

mPos mean position

ms milliseconds

mValue mean value

mVel mean (sway) velocity in mm/s

n number

NB narrow base

NDI neck disability index

Nm/rad unit (kinetics) for torque

NP neck pain

NRS numeric rating scale (NRS-11)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td>not significant</td>
</tr>
<tr>
<td>NSLBP</td>
<td>non-specific low back pain</td>
</tr>
<tr>
<td>NSMBP</td>
<td>non-specific mid back pain</td>
</tr>
<tr>
<td>NSNP</td>
<td>non-specific neck pain</td>
</tr>
<tr>
<td>PASW</td>
<td>predictive analytics software</td>
</tr>
<tr>
<td>PCC</td>
<td>Pearson's correlation coefficient</td>
</tr>
<tr>
<td>PIR</td>
<td>post-isometric relaxation</td>
</tr>
<tr>
<td>RC</td>
<td>reliability coefficient</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean square</td>
</tr>
<tr>
<td>ROM</td>
<td>range of motion</td>
</tr>
<tr>
<td>RTA</td>
<td>road traffic accident</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDA</td>
<td>stabilogram diffusion analysis</td>
</tr>
<tr>
<td>sec</td>
<td>second(s)</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of measurement</td>
</tr>
<tr>
<td>SI</td>
<td>stability index (COP parameter)</td>
</tr>
<tr>
<td>SL</td>
<td>single leg</td>
</tr>
<tr>
<td>SLR</td>
<td>straight leg raise (orthopedic test)</td>
</tr>
<tr>
<td>SMT</td>
<td>spinal manipulative therapy</td>
</tr>
<tr>
<td>SPSS</td>
<td>statistics package for the social sciences</td>
</tr>
<tr>
<td>TEA</td>
<td>total excursion area</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analogue scale</td>
</tr>
<tr>
<td>vel</td>
<td>velocity</td>
</tr>
<tr>
<td>WAD</td>
<td>whiplash associated disorder</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Chapter 1

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The position of COP and COM</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>The mean base of support</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Typical pair of COP and COM curves in a healthy individual</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>The interaction between COM and corresponding COP excursions</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>COM movements during postural sway</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Flow diagram of the human stance control</td>
<td>16</td>
</tr>
<tr>
<td>1.7</td>
<td>An example of a COP path of a healthy individual</td>
<td>21</td>
</tr>
<tr>
<td>1.8</td>
<td>The Metitur GB 300 as an example of a strain gauge based system</td>
<td>23</td>
</tr>
<tr>
<td>1.9</td>
<td>The Metitur Good Balance GB 300</td>
<td>24</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flowchart of articles</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>The effect of sampling frequency on recording COP<sub>net</sub> data in AP/ML</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>direction</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Base of support</td>
<td>56</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Flowchart of papers</td>
<td>67</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Flowchart of papers</td>
<td>89</td>
</tr>
</tbody>
</table>
Chapter 5
Figure 5.1 Flowchart of papers 106

Chapter 6
Figure 6.1 Location and equipment 123
Figure 6.2 Numeric pain scale (NRS-11) 128
Figure 6.3 Original, translated and modified DRI 130
Figure 6.4 Painful regions 1-3 142
Figure 6.5 Sway direction quadrants 143
Figure 6.6 Visualization of COP path, main sway axis and 90% circle 144

Chapter 7
Figure 7.1.1 Standard position of the participants on the GB 300 148
Figure 7.1.2 COP mean velocity in antero-posterior and medio-lateral direction 153
Figure 7.1.3 COP circle diameter (mm) of 90% path excursion 154
Figure 7.1.4 COP velocity moment (mm²/s) 154
Figure 7.1.5 Mean value in ML and AP direction (mm) 155
Figure 7.3.1 Altman Nomogram showing sample size required for NSNP sufferers 166
Figure 7.3.2 Altman Nomogram showing sample size required for NSLBP sufferers 168
Figure 7.3.3 Altman Nomogram showing sample size required for thoracic pain sufferers 170

Chapter 8
Figure 8.1 Structure for assessing learning or fatigue effects during COP measurements 176
Figure 12.3 Main sway direction of healthy controls compared to pain sufferers 250

Chapter 13

Figure 13.1 Disability associated with NSLBP of varying intensity 258
Figure 13.2 Disability associated with NSNP of varying intensity 259
Figure 13.3 Disability associated with NSMBP of varying intensity 259

Chapter 14

Figure 14.1 Flowchart of procedures 274
Figure 14.2 Development of individual and mean NRS-scores over three measurements 276
Figure 14.3 Individual changes in mVel ML and AP over three measurements 277
(n=38)
Figure 14.4 Individual changes in 90% circle diameter over three measurements 278
(n=38)
Figure 14.5 Pain intensity and mVel ML for participants with a change in NRS scores of ≤1 over the course of three measurements (n=7) 279
Figure 14.6 Pain intensity and mVel AP for participants with a change in NRS scores of ≤1 over the course of three measurements (n=7) 280
Figure 14.7 Pain intensity and mVel ML for participants with a change in NRS scores of ≥4 over the course of three measurements (n=9) 281
Figure 14.8 Pain intensity and mVel AP for participants with a change in NRS scores of ≥4 over the course of three measurements (n=9) 282

Chapter 15

Figure 15.1 Flowchart of procedures 294
Figure 15.2 Development of individual and mean NRS-scores over three measurements
Figure 15.3 Individual changes in mVel ML and AP over three measurements (n=36)
Figure 15.4 Individual changes in 90% circle diameter over three measurements (n=36)
Figure 15.5 Pain intensity and mVel ML for participants with a change in NRS scores of ≤1 over the course of three measurements (n=13)
Figure 15.6 Pain intensity and mVel AP for participants with a change in NRS scores of ≤1 over the course of three measurements (n=13)
Figure 15.7 Pain intensity and mVel ML for participants with a change in NRS scores of ≥4 over the course of three measurements (n=5)
Figure 15.8 Pain intensity and mVel AP for participants with a change in NRS scores of ≥4 over the course of three measurements (n=5)
LIST OF TABLES

Chapter 1

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Properties of the three motor systems in balance movement control</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Selective list of posturographic parameters</td>
<td>22</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Participant demographics and health status</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Study characteristics</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Distribution of various interclass correlation coefficient models</td>
<td>38</td>
</tr>
<tr>
<td>2.4a</td>
<td>Visual Condition</td>
<td>39</td>
</tr>
<tr>
<td>2.4b</td>
<td>Sampling duration</td>
<td>39</td>
</tr>
<tr>
<td>2.4c</td>
<td>Number of repetitions</td>
<td>40</td>
</tr>
<tr>
<td>2.4d</td>
<td>Stance</td>
<td>40</td>
</tr>
<tr>
<td>2.4e</td>
<td>Age</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>Setups reported to provide reliable COP data</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Recommendations for best practice</td>
<td>59</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Participant demographics and health status</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Study characteristics and selected COP parameters measured on a firm surface</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>Reliability criteria</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>Pain definition, intensity and characteristics of included studies</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>The effect of NSLBP on postural sway for the COP parameter mean velocity</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 3.6 Disability definition and characteristics of included studies 76

Chapter 4
Table 4.1 Participant demographics and health status 90
Table 4.2 Study characteristics and selected COP parameters measured in NSNP sufferers 91
Table 4.3 Study characteristics and selected COP parameters measured in WAD sufferers 93
Table 4.4 Reliability criteria 94
Table 4.5 Pain definition, intensity and characteristics of included studies 95

Chapter 5
Table 5.1 Participant demographics and health status 107
Table 5.2 Alterations in COP excursions associated with a therapeutic intervention 110

Chapter 7
Table 7.1.1 Participant characteristics 150
Table 7.1.2 Means, F-test results and p-value for the different trial durations 151
Table 7.1.3 ICC\(_{2,k}\) values, SEM and 95% confidence intervals 152
Table 7.2.1 Participant characteristics 162
Table 7.2.2 Participant's responses 163
Table 7.3.1 Demographic characteristics of healthy controls 165
Table 7.3.2 Demographic and functional characteristics of NSNP patients 166
Table 7.3.3 Results for painful Region 1 (neck) 167
Table 7.3.4 Demographic and functional characteristics 168
Table 7.3.5 Results for painful Region 2 (mid back/thoracic spine) 169
Table 7.3.6 Demographic and functional characteristics 169
Table 7.3.7 Results for painful Region 3 (lumbar spine/pelvis) 171

Chapter 8
Table 8.1 Participant characteristics 174
Table 8.2 Results of 10 repetitions of 90sec duration in single session (Group I) 179
Table 8.3 Results of three repetitions of 90sec duration across three sessions 180
(Group II)

Chapter 9
Table 9.1 Demographic and functional characteristics 194
Table 9.2 Reliability of COP measures 194
Table 9.3 Comparison of COP data between the age groups 195
Table 9.4 Pain intensity and postural sway at baseline 196
Table 9.5 Sway differences between the individual NRS-11 scores for mVel AP 199
and ML
Table 9.6 Sway differences between the individual NRS-11 scores for 90% circle 199
diameter

Chapter 10
Table 10.1 Demographic and functional characteristics 215
Table 10.2 Pain intensity and postural sway at baseline 216
Table 10.3 Sway differences between the individual NRS-11 scores for mVel AP 219
and ML
Table 10.4 Sway differences between the individual NRS-11 scores for 90% circle 219
Chapter 11

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Demographic and functional characteristics</td>
<td>233</td>
</tr>
<tr>
<td>11.2</td>
<td>Pain intensity and postural sway at baseline</td>
<td>234</td>
</tr>
<tr>
<td>11.3</td>
<td>Sway differences between the individual NRS-11 scores for mVel AP and ML</td>
<td>237</td>
</tr>
<tr>
<td>11.4</td>
<td>Sway differences between the individual NRS-11 scores for 90% circle diameter</td>
<td>237</td>
</tr>
</tbody>
</table>

Chapter 12

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Comparison of painful regions for the parameter mVel ML</td>
<td>248</td>
</tr>
<tr>
<td>12.2</td>
<td>Comparison of painful regions for the parameter mVel AP</td>
<td>249</td>
</tr>
<tr>
<td>12.3</td>
<td>Comparison of painful regions for the parameter 90% circle diameter</td>
<td>249</td>
</tr>
</tbody>
</table>

Chapter 13

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Demographic and functional characteristics</td>
<td>255</td>
</tr>
<tr>
<td>13.2</td>
<td>Disability associated with NSLBP of varying intensity</td>
<td>257</td>
</tr>
<tr>
<td>13.3</td>
<td>Disability associated with NSNP of varying intensity</td>
<td>259</td>
</tr>
<tr>
<td>13.4</td>
<td>Disability associated with NSMBP of varying intensity</td>
<td>260</td>
</tr>
</tbody>
</table>

Chapter 14

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Patient characteristics</td>
<td>275</td>
</tr>
</tbody>
</table>
Table 14.2 Results for postural sway velocity ML across three repeated measurements at 2-3 day intervals
Table 14.3 Results for postural sway velocity AP across three repeated measurements at 2-3 day intervals
Table 14.4 Results for 90% circle diameter across three repeated measurements at 2-3 day intervals

Chapter 15
Table 15.1 Patient characteristics
Table 15.2 Results for postural sway velocity ML across three repeated measurements at 2-3 day intervals
Table 15.3 Results for postural sway velocity AP across three repeated measurements at 2-3 day intervals
Table 15.4 Results for 90% circle diameter across three repeated measurements at 2-3 day intervals

Chapter 16
Table 16.1 Adverse reactions associated with the multimodal therapeutic intervention
<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>Component reaction forces</td>
<td>20</td>
</tr>
<tr>
<td>6.1</td>
<td>Mean sway velocity</td>
<td>142</td>
</tr>
<tr>
<td>7.1</td>
<td>Intra-class correlation coefficient (ICC$_{2,k}$)</td>
<td>149</td>
</tr>
<tr>
<td>7.2</td>
<td>Standard error of measurement</td>
<td>150</td>
</tr>
<tr>
<td>7.3</td>
<td>Standardized difference</td>
<td>165</td>
</tr>
</tbody>
</table>