User Authentication Incorporating
Feature Level Data Fusion of
Multiple Biometric Characteristics

Mark Abernethy

This thesis is presented for the degree of
Doctor of Philosophy
Murdoch University, January 2011.
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

....................................

Mark Abernethy
Abstract

This PhD research project developed and evaluated innovative approaches to computer system user authentication, using biometric characteristics. It involved experiments with a significant number of participants and development of new approaches to biometric data representation and analysis.

The initial authentication procedure, that we all perform when we log onto a computer system, is considered to be the first line of protection for computer systems. The password is the most common verification token used in initial authentication procedures. Unfortunately, passwords are subject to numerous attack vectors (loss, theft, guessing or cracking), and as a result unauthorised persons may gain access to the verification token and be incorrectly authenticated. This has led to password-based authentication procedures being responsible for a large proportion of computer network security breaches.

In recent years, the use of biometrics has been increasingly researched as an alternative to passwords in the initial authentication procedure. Biometrics concerns the physical traits and behavioural characteristics that make each individual unique. Biometric authentication involves the use of biometric technologies in authentication systems, with the aim to provide accurate verification (based on biometric characteristics).

Research has demonstrated that uni-modal biometric authentication (that is, authentication based on a single biometric characteristic) makes it difficult for an impostor to impersonate a legitimate user. More recent research is finding that multi-modal biometric authentication (that is, authentication based on the combination of multiple biometric characteristics) can make it even more difficult for an impostor to impersonate a legitimate user. Thus multi-modal biometrics claims improved accuracy and robustness.
Multi-modal biometrics requires consideration of various aspects of data integration, known to the field of data fusion. Multi-modal biometric research has, until recently, focused on the fusion of data (from multiple sources) at the decision level or the confidence score level. It has been proposed that fusion of data at the feature level will produce more accurate and reliable verification.

However, fusion of data at the feature level is a more difficult task than fusion at the other two levels. For decision level fusion, 'accept' or 'reject' results from the different data sources are fused. For confidence score level fusion, confidence scores (typically in the continuous interval [0,1]) from the different data sources are fused. That is, for the aforementioned levels, the data from the multiple sources are of the same nature. Feature level fusion combines feature vectors, where the data from the different sources are most likely to consist of different units of measurement.

Data fusion literature formally specifies that data may be combined according to three paradigms: competitive, complementary, and cooperative. Competitive data fusion assesses data from all available sources, and bases classification upon the 'best' source. Complementary data fusion combines all available data from all sources, and bases classification upon this combined data. Cooperative data fusion involves the selection of the best features of each individual data source, and then combines the selected features prior to classification.

The objectives of the current study were to investigate the use of two individual biometric characteristics (keystroke dynamics and fingerprint recognition). For keystroke dynamics, feature selection was employed to reduce the variability associated with data from this characteristic. For fingerprint recognition, a new method was developed to represent fingerprint features. This was done to assist classification by Artificial Neural Networks, and to meet the requirement to facilitate fusion with the keystroke dynamics data at the feature level.
Whilst feature level data fusion was the primary objective, investigation of the two individual characteristics was conducted to enable comparison of results with the data fusion results. For the data fusion investigation, the complementary and cooperative paradigms were adopted, with the cooperative approach involving four stages.

The feature selection method chosen to filter keystroke dynamics data was based on normality statistics, and returned results comparable to many other research efforts. The fingerprint feature representation method developed for this experiment demonstrated an innovative and effective technique, which could be applicable in a uni-modal or a multi-modal context.

As the new fingerprint representation method resulted in a standard length feature vector for each fingerprint, data alignment and subsequent feature level data fusion was efficiently and practicably facilitated.

The experiment recruited 90 participants to provide typing and fingerprint samples. Of these, 140 keystroke dynamics samples and 140 fingerprint samples (from each participant) were utilised for the first two phases of the experiment. Phase three of the experiment involved the fusion of the samples from the first two phases, and thus there were 140 combined samples. These quantities provided 100 samples for false negative testing and 10,500 samples for false positive testing (for each participant for each phase of the experiment). These figures are similar or better than virtually all previous research studies in this field.

The results of the three phases of the experiment were calculated as the two performance variables, the false rejection rate (FRR)—measuring the false negatives—and the false acceptance rate (FAR)—measuring the false positives.

The keystroke dynamics investigation returned an average FAR of 0.02766095 and an average FRR of 0.0862, which were at least comparable with other research in the field.
The fingerprint recognition investigation returned an average FAR of 0.0 and an average FRR of 0.0022, which were as good as (or better than) other research in the field.

The feature level data fusion adopting the complementary approach returned an average FAR of 0.0 and an average FRR of 0.0004. Feature level data fusion adopting the cooperative approach returned respective average FAR and FRR results of 0.00000381 and 0.0004 for stage 1, 0.0 and 0.0006 for stage 2, 0.0 and 0.001 for stage 3, and 0.0 and 0.001 for stage 4.

The research demonstrated that uni-modal biometric authentication systems provide an accurate alternative to traditional password-based authentication methods. Additionally, the keystroke dynamics investigation demonstrated that filtering ‘noisy’ data from raw data improved accuracy for this biometric characteristic (though other filtering methods than that used in this research may improve accuracy further). Also, the newly developed fingerprint representation method demonstrated excellent results, and indicated that its use for future research (in representing two dimensional data for classification by Artificial Neural Networks) could be advantageous.

The data fusion investigation demonstrated that multi-modal biometric authentication systems provide additional accuracy improvement (as well as a perceived robustness) compared to uni-modal biometric authentication systems. Feature level data fusion demonstrated improved accuracy compared with confidence score level and decision level data fusion methods. The new fingerprint representation method (which provided an innovative technique for representing data from any two dimensional data source) facilitated feature level data fusion with keystroke dynamic data, and the results validate the importance of using feature rich data.
Contents

1 Introduction

1.1 Context Of The Study ... 1

1.2 Motivation And Objectives For This Research 6
 1.2.1 Motivation For The Study 6
 1.2.2 Objectives of the Study 10
 1.2.3 Research Questions 11

1.3 Significance Of The Research 12

1.4 Scope Of The Research ... 14

1.5 Experimental Method And The Rationale For Its Selection 16

1.6 Outline Of This Dissertation 17

1.7 Conclusion ... 18

2 Background

2.1 Introduction ... 19

2.2 Biometrics ... 20
 2.2.1 Overview of Biometrics 20
 2.2.2 Biometric Authentication Systems 22
 2.2.3 Biometric Performance Variables and System Errors 27
 2.2.4 Biometric Characteristics 30
 2.2.4.1 Deoxyribonucleic Acid (DNA) 32
 2.2.4.2 Facial Recognition 33
 2.2.4.3 Iris Pattern Recognition 34
 2.2.4.4 Retinal Pattern Recognition 35
 2.2.4.5 Speaker Recognition 36
2.2.4.6 Fingerprint Recognition 37
2.2.4.7 Palmprint Recognition 37
2.2.4.8 Hand Geometry ... 38
2.2.4.9 Keystroke Dynamics .. 39
2.2.4.10 Signature Recognition 39
2.2.4.11 Gait Recognition .. 40
2.2.4.12 Body Odor Recognition 40
2.2.4.13 More Detailed Discussion 41

2.3 Data Fusion And Multi-Modal Biometrics 41
 2.3.1 Data Fusion .. 41
 2.3.1.1 Paradigms of Data Fusion 44
 2.3.1.2 Formal Levels of Fusion 48
 2.3.1.3 Data Alignment .. 49
 2.3.2 Multi-Modal Biometrics 50
 2.3.2.1 Levels of Fusion In Multi-Modal Biometrics 52
 2.3.2.2 Review of Multi-Modal Biometrics Research 61

2.4 Pattern Recognition And Artificial Neural Networks 78
 2.4.1 Pattern Recognition .. 79
 2.4.1.1 Classification Schemes 81
 2.4.2 Artificial Neural Networks 84
 2.4.2.1 Imitating The Biological Model 85
 2.4.2.2 ANN Architectures 94
 2.4.3 The Multi-Layer Perceptron As A Pattern Classifier 113

2.5 Conclusion .. 116

3 Keystroke Dynamics .. 119
 3.1 Introduction ... 119
 3.2 Overview of Keystroke Dynamics 119
 3.3 Metrics .. 121
 3.4 Keystroke Dynamics Related Research 124
4 Fingerprint Recognition

4.1 Introduction ... 155
4.2 Overview of Fingerprint Recognition 156
 4.2.1 The Uniqueness of Fingerprint 160
4.3 Fingerprint Features ... 162
 4.3.1 Global Features ... 162
 4.3.2 Local Features .. 164
4.4 Automated Fingerprint Identification Systems 167
 4.4.1 Fingerprint Acquisition 169
 4.4.1.1 Off-Line Fingerprint Acquisition 169
 4.4.1.2 Latent Fingerprints 170
 4.4.1.3 Live-Scan Fingerprint Acquisition 173
 4.4.2 Fingerprint Representation 175
 4.4.3 Pre-processing .. 177
 4.4.4 Feature Extraction 179
 4.4.5 Fingerprint Classification 183
 4.4.5.1 Feature Extraction For Classification 187
 4.4.5.2 Classification Techniques 188
 4.4.6 Fingerprint Verification 190
 4.4.6.1 Feature Extraction For Verification 192
 4.4.6.2 Verification Techniques 192
4.5 Minutiae-based Matching Related Research 196
4.6 Summary Of Minutiae-Based Matching Techniques 218
 4.6.1 Approach Adopted By The Reviewed Research Efforts 219
 4.6.2 Approach Adopted In The Current Experiment 222
 4.6.3 Rationale For The Adopted Approach 223
5 Experimental Methods

5.1 Introduction .. 225
5.2 Experimental Overview 226
5.3 Participants .. 227
5.4 Keystroke Dynamics 229
 5.4.1 Software .. 229
 5.4.2 Data Collection 232
 5.4.3 Metrics .. 234
 5.4.4 Pre-processing 235
 5.4.4.1 Keystroke Dynamics Feature Selection ... 239
 5.4.5 Final Analysis Procedure 247
 5.4.5.1 Training Phase 248
 5.4.5.2 Testing Phase 251
5.5 Fingerprint Recognition 252
 5.5.1 Software .. 252
 5.5.2 Data Collection 255
 5.5.3 Fingerprint Feature Extraction 257
 5.5.4 Local Feature Registration 258
 5.5.4.1 Model Feature Set 261
 5.5.4.2 Scene Feature Set Alignment 262
 5.5.5 Feature Selection 277
 5.5.6 Final Analysis Procedure 283
 5.5.6.1 Training Phase 283
 5.5.6.2 Testing Phase 285
5.6 Feature Level Data Fusion 286
 5.6.1 Introduction 286
 5.6.2 Complementary Data Fusion Approach 287
 5.6.2.1 Complementary Fusion of Feature Data .. 288
 5.6.2.2 Final Analysis Procedure 290
5.6.3 Cooperative Data Fusion Approach .. 291
 5.6.3.1 Selection of Feature Metrics ... 295
 5.6.3.2 Cooperative Fusion of Feature Data 305
 5.6.3.3 Final Analysis Procedure ... 307

5.7 Experimental Validity ... 309
 5.7.1 Internal Validity ... 310
 5.7.2 External Validity ... 313

5.8 Conclusion .. 314

6 Research Results And Analysis Method ... 317

6.1 Overview .. 317

6.2 Classification of Authentication Outcomes 317
 6.2.1 Classification Measurement .. 317
 6.2.2 Receiver Operating Characteristics (ROC) Graphs 323
 6.2.2.1 ROC space .. 323
 6.2.2.2 Area Under The ROC Curve ... 328
 6.2.2.3 Optimal Operating Point ... 330

6.3 Applying ROC In This Study .. 333
 6.3.1 Introduction ... 333
 6.3.2 Calculation of ROC Operating Points 335
 6.3.3 Calculation of The Area Under The ROC Curve 337
 6.3.4 Calculation of Decision Threshold .. 338

6.4 Results ... 343
 6.4.1 Keystroke Dynamics (Phase 1) ... 345
 6.4.2 Fingerprint Recognition (Phase 2) .. 351
 6.4.3 Data Fusion (Phase 3) .. 353
 6.4.3.1 Complementary Data Fusion .. 353
 6.4.3.2 Cooperative Data Fusion ... 355

6.5 Conclusion .. 363
7 Discussion Of Results 367

7.1 Introduction .. 367

7.2 Discussion .. 367

7.2.1 Discussion Of Keystroke Dynamics Results 369

7.2.1.1 Summary of Keystroke Dynamics Results 387

7.2.2 Discussion Of Fingerprint Recognition Results 389

7.2.2.1 Summary of Fingerprint Recognition Results 401

7.2.3 Discussion Of Data Fusion Results 404

7.2.3.1 Complementary Data Fusion 404

7.2.3.2 Summary of Complementary Data Fusion Results 413

7.2.3.3 Cooperative Data Fusion 414

7.2.3.4 Summary of Cooperative Data Fusion Results 432

7.3 Conclusion .. 434

8 Conclusion 437

8.1 Research Purpose and Objectives 437

8.2 Main Contribution of the Research 441

8.3 Limitations of the Research 444

8.4 Implications and Practical Application of the Research 448

8.5 Future Research Directions 451

8.6 Final Remarks .. 453

Appendix A 455

A.1 Reported Security Breaches And Vulnerabilities 456

Appendix B 461

B.1 Keystroke Dynamics Metrics Selection Worked Example 461

Appendix C 467

C.1 Keystroke Dynamics Phase Software 467

C.1.1 Pre-processing ... 468

C.1.2 Experimental Procedure 469

C.2 Fingerprint Recognition Phase Software 472
List of Tables

2.1 Summary of Biometric Characteristics for Authentication Systems . . 30
2.2 Summary of Reviewed Literature Involving Multi-Modal Biometrics . 62
3.1 Metric Calculation for a Two-Key Combination 124
3.2 Summary of Reviewed Literature Involving Static Verification 126
3.3 Summary of Reviewed Literature Involving Dynamic Verification . . 147
4.1 FBI Latent Fingerprint Collection Procedures 171
4.2 Correlation of Early Fingerprint Classes 184
4.3 Proportion of Fingerprint Classes . 186
4.4 Fingerprint Classes and Their Singular Points 189
4.5 Summary of Reviewed Literature Involving Minutiae-Based Matching 198
4.6 Performance Metrics Experiment by He et al., 2003 209
4.7 Performance Metrics Experiment by Tong et al., 2005 211
5.1 Priority Ratings . 241
5.2 Indices Of Selected Metrics For Participant One 244
5.3 Indices Of Selected Metrics For Participant Three 244
5.4 Example of Global and Selected Metrics for a Participants Input File 246
5.5 Example Registration Tables . 261
5.6 Local Area Alignment Coordinates . 265
5.7 Boundary Limits For Candidate Transformation Factors 272
5.8 Global Adjustment Ranges . 274
5.9 Example Output From ‘.tab’ File . 281
5.10 Participants with Unmatched Features After Selection 282
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11</td>
<td>Approximate Relative Local Gain for Keystroke Dynamics</td>
<td>300</td>
</tr>
<tr>
<td>5.12</td>
<td>Average Local Gain Proportions</td>
<td>301</td>
</tr>
<tr>
<td>5.13</td>
<td>Number of Metrics Per Percentage</td>
<td>303</td>
</tr>
<tr>
<td>6.1</td>
<td>AUC Statistic Descriptions</td>
<td>328</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison Between AUC and TPMean for Keystroke Dynamics</td>
<td>340</td>
</tr>
<tr>
<td>6.4</td>
<td>Confidence Levels</td>
<td>341</td>
</tr>
<tr>
<td>6.5</td>
<td>Keystroke Dynamics Statistics for Threshold Calculation</td>
<td>345</td>
</tr>
<tr>
<td>6.6</td>
<td>Keystroke Dynamics Results</td>
<td>346</td>
</tr>
<tr>
<td>6.7</td>
<td>Fingerprint Recognition Statistics for Threshold Calculation</td>
<td>351</td>
</tr>
<tr>
<td>6.8</td>
<td>Fingerprint Recognition Results</td>
<td>352</td>
</tr>
<tr>
<td>6.9</td>
<td>Complementary Data Fusion Statistics for Threshold Calculation</td>
<td>353</td>
</tr>
<tr>
<td>6.10</td>
<td>Complementary Data Fusion Results</td>
<td>354</td>
</tr>
<tr>
<td>6.11</td>
<td>Cooperative Data Fusion (40%) Statistics for Threshold Calculation</td>
<td>355</td>
</tr>
<tr>
<td>6.12</td>
<td>Cooperative Data Fusion (40%) Results</td>
<td>356</td>
</tr>
<tr>
<td>6.13</td>
<td>Cooperative Data Fusion (50%) Statistics for Threshold Calculation</td>
<td>357</td>
</tr>
<tr>
<td>6.14</td>
<td>Cooperative Data Fusion (50%) Results</td>
<td>358</td>
</tr>
<tr>
<td>6.15</td>
<td>Cooperative Data Fusion (60%) Statistics for Threshold Calculation</td>
<td>359</td>
</tr>
<tr>
<td>6.16</td>
<td>Cooperative Data Fusion (60%) Results</td>
<td>360</td>
</tr>
<tr>
<td>6.17</td>
<td>Cooperative Data Fusion (70%) Statistics for Threshold Calculation</td>
<td>361</td>
</tr>
<tr>
<td>6.18</td>
<td>Cooperative Data Fusion (70%) Results</td>
<td>362</td>
</tr>
<tr>
<td>6.19</td>
<td>Summary Statistics of Experimental Results</td>
<td>364</td>
</tr>
<tr>
<td>7.1</td>
<td>Corresponding Table Numbers</td>
<td>368</td>
</tr>
<tr>
<td>7.2</td>
<td>Duplication of Keystroke Dynamics Statistics</td>
<td>370</td>
</tr>
<tr>
<td>7.3</td>
<td>Duplication of Keystroke Dynamics Results</td>
<td>371</td>
</tr>
<tr>
<td>7.4</td>
<td>Summary of Reviewed Papers Using Statistical Analysis Methods</td>
<td>375</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary of Reviewed Papers Using Machine Learning Techniques</td>
<td>378</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary of Reviewed Papers Using Artificial Neural Networks</td>
<td>382</td>
</tr>
<tr>
<td>7.7</td>
<td>Duplication of Fingerprint Recognition Statistics</td>
<td>390</td>
</tr>
<tr>
<td>7.8</td>
<td>Duplication of Fingerprint Recognition Results</td>
<td>391</td>
</tr>
<tr>
<td>7.9</td>
<td>Summary of Fingerprint Recognition Results For Reviewed Papers</td>
<td>393</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>7.10</td>
<td>Duplication of Complementary Data Fusion Statistics</td>
<td>405</td>
</tr>
<tr>
<td>7.11</td>
<td>Duplication of Complementary Data Fusion Results</td>
<td>407</td>
</tr>
<tr>
<td>7.12</td>
<td>Summary of Reviewed Papers Using Complementary Data Fusion</td>
<td>408</td>
</tr>
<tr>
<td>7.13</td>
<td>Duplication of Cooperative Data Fusion (Stage 1 - 40%) Statistics</td>
<td>416</td>
</tr>
<tr>
<td>7.14</td>
<td>Duplication of Cooperative Data Fusion (Stage 1 - 40%) Results</td>
<td>417</td>
</tr>
<tr>
<td>7.15</td>
<td>Duplication of Cooperative Data Fusion (Stage 2 - 50%) Statistics</td>
<td>419</td>
</tr>
<tr>
<td>7.16</td>
<td>Duplication of Cooperative Data Fusion (Stage 2 - 50%) Results</td>
<td>420</td>
</tr>
<tr>
<td>7.17</td>
<td>Duplication of Cooperative Data Fusion (Stage 3 - 60%) Statistics</td>
<td>422</td>
</tr>
<tr>
<td>7.18</td>
<td>Duplication of Cooperative Data Fusion (Stage 3 - 60%) Results</td>
<td>424</td>
</tr>
<tr>
<td>7.19</td>
<td>Duplication of Cooperative Data Fusion (Stage 4 - 70%) Statistics</td>
<td>425</td>
</tr>
<tr>
<td>7.20</td>
<td>Duplication of Cooperative Data Fusion (Stage 4 - 70%) Results</td>
<td>427</td>
</tr>
<tr>
<td>7.21</td>
<td>Summary of Reviewed Papers Using Cooperative Data Fusion</td>
<td>429</td>
</tr>
<tr>
<td>A.2</td>
<td>Reported Vulnerabilities (1995-2008)</td>
<td>457</td>
</tr>
<tr>
<td>A.3</td>
<td>Number of Internet Users (December 1995-June 2002)</td>
<td>458</td>
</tr>
<tr>
<td>B.1</td>
<td>Coefficient Values For Each Metric</td>
<td>462</td>
</tr>
<tr>
<td>B.2</td>
<td>Sorted Coefficient Values And Associated Metric Numbers</td>
<td>463</td>
</tr>
<tr>
<td>B.3</td>
<td>Sorted Metrics With Rank Allocations</td>
<td>464</td>
</tr>
<tr>
<td>B.4</td>
<td>Accumulated Rank Score For Metrics</td>
<td>465</td>
</tr>
<tr>
<td>C.1</td>
<td>Keystroke Dynamics Directory Structure</td>
<td>468</td>
</tr>
<tr>
<td>C.2</td>
<td>Fingerprint Recognition Directory Structure</td>
<td>473</td>
</tr>
<tr>
<td>C.3</td>
<td>Complementary Data Fusion Directory Structure</td>
<td>477</td>
</tr>
<tr>
<td>C.4</td>
<td>Directory Structure</td>
<td>479</td>
</tr>
</tbody>
</table>
List of Figures

2.1 The Generic Biometric Authentication System 24
2.2 Complementary Data Fusion Paradigm ... 45
2.3 Competitive Data Fusion Paradigm .. 46
2.4 Cooperative Data Fusion Paradigm ... 47
2.5 Data Fusion Levels In Multi-Modal Biometrics 53
2.6 Feature Level Data Fusion ... 56
2.7 Confidence Score Level Data Fusion ... 58
2.8 Decision Level Data Fusion ... 60
2.9 Components of a Biological Neuron ... 85
2.10 Simple Non-linear Model of a Neuron ... 88
2.11 Illustrations of Step-wise, Piece-wise, And Sigmoid Functions 89
2.12 The Single Layer Perceptron ... 96
2.13 The Multi-Layer Perceptron .. 98
2.14 The Hopfield Neural Network ... 103
2.15 The Self-Organising Map (SOM) .. 106
2.16 Adaptive Resonance Theory (ART) ... 109

3.1 States of a Two-Key Combination .. 123
3.2 Keystroke Durations and Digraph Latencies for the digraph “th” 123

4.1 Fingerprint Impression Illustrating Ridges And Furrows 156
4.2 Fingerprint Impression Illustrating Core And Delta Points 163
4.3 Local Fingerprint Features Types .. 165
4.4 Local Features Illustrating Minutiae Positions 166
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Captured Fingerprint And Its Orientation Field</td>
<td>179</td>
</tr>
<tr>
<td>4.6</td>
<td>Captured Fingerprint, Binary, and Thinned Representations</td>
<td>181</td>
</tr>
<tr>
<td>4.7</td>
<td>Fingerprint Classes defined by Henry</td>
<td>184</td>
</tr>
<tr>
<td>5.1</td>
<td>Graphical User Interface for Keystroke Dynamics Capture Program</td>
<td>230</td>
</tr>
<tr>
<td>5.2</td>
<td>Creation of Training and Testing Files For ANN Processing</td>
<td>249</td>
</tr>
<tr>
<td>5.3</td>
<td>Graphical User Interface for Fingerprint Feature Capture Program</td>
<td>253</td>
</tr>
<tr>
<td>5.4</td>
<td>Alignment Example</td>
<td>260</td>
</tr>
<tr>
<td>5.5</td>
<td>Local Area Alignment Example</td>
<td>264</td>
</tr>
<tr>
<td>5.6</td>
<td>Filter Model</td>
<td>296</td>
</tr>
<tr>
<td>5.7</td>
<td>Wrapper Model</td>
<td>297</td>
</tr>
<tr>
<td>6.1</td>
<td>Contingency Table</td>
<td>319</td>
</tr>
<tr>
<td>6.2</td>
<td>ROC Space</td>
<td>324</td>
</tr>
<tr>
<td>6.3</td>
<td>Binary Classifiers</td>
<td>325</td>
</tr>
<tr>
<td>6.4</td>
<td>ROC Curve</td>
<td>327</td>
</tr>
<tr>
<td>6.5</td>
<td>Comparison of AUC for Two Classifiers</td>
<td>330</td>
</tr>
<tr>
<td>6.6</td>
<td>ROC Curve for Participant 1</td>
<td>337</td>
</tr>
<tr>
<td>6.7</td>
<td>Example Demonstrating Best Classification</td>
<td>347</td>
</tr>
<tr>
<td>6.8</td>
<td>Example Demonstrating Average Classification</td>
<td>347</td>
</tr>
<tr>
<td>6.9</td>
<td>Example Demonstrating Worst Classification</td>
<td>348</td>
</tr>
<tr>
<td>6.10</td>
<td>Keystroke Dynamics</td>
<td>350</td>
</tr>
<tr>
<td>A.2</td>
<td>Reported Vulnerabilities (1995-2008)</td>
<td>457</td>
</tr>
<tr>
<td>A.3</td>
<td>Number of Internet Users (December 1995-June 2002)</td>
<td>459</td>
</tr>
<tr>
<td>D.1</td>
<td>Best Classification Performance – Participant 52</td>
<td>484</td>
</tr>
<tr>
<td>D.2</td>
<td>Good Classification Performance – Participant 18</td>
<td>484</td>
</tr>
<tr>
<td>D.3</td>
<td>Good Classification Performance – Participant 27</td>
<td>485</td>
</tr>
<tr>
<td>D.4</td>
<td>Good Classification Performance – Participant 60</td>
<td>485</td>
</tr>
<tr>
<td>D.5</td>
<td>Average Classification Performance – Participant 38</td>
<td>486</td>
</tr>
<tr>
<td>D.6</td>
<td>Average Classification Performance – Participant 49</td>
<td>486</td>
</tr>
</tbody>
</table>
D.7 Average Classification Performance – Participant 61 487
D.8 Worst Classification Performance – Participant 3 487
D.9 Worst Classification Performance – Participant 12 488
D.10 Worst Classification Performance – Participant 74 488
Acknowledgments

I would like to express my sincere gratitude to my primary supervisor, Dr Andrew Turk, whose analytical skills proved most valuable and insightful during the course of this project. Dr Turk has been inspirational in encouraging me to strive for the highest standards, whilst undertaking rigorous and honest research. He has also been very helpful in regard to maintaining self-discipline (in relation to one’s research work ethic), and a congenial and cooperative attitude with one’s colleagues.

This research involved many technical aspects, and thanks are extended to my secondary supervisor Mr Shri M. Rai for his assistance with these matters. Shri Rai supervised my honours research and was therefore familiar with previous work in the area of keystroke dynamics. However, his proficiency in mathematics and science became truly valuable when working with fingerprint data and data fusion issues.

My thanks to friend and colleague, Dr Christian Payne. Christian first kindled my interest in computer security, and this area of research remains as interesting and challenging today as ever.

Thanks to Dr Lance Fung for suggesting the inclusion of fingerprint recognition for this project. His suggestion was inspirational and opened up new areas of investigation. Dr Fung also arranged for the purchase of the fingerprint scanner and the software development kit that were used for the experiment.

To my dear friend Dr R. (Chandra) Chandrashekar of SwanLotus, thank you for your assistance with interpreting the point pattern matching algorithm used in the experiment to align fingerprint features. Your contribution was invaluable, and your friendship is priceless.

To my family and friends, thank you for the support that only loved ones can give.

To my dearest friend Paramahansa Yogananda, thank you so much for showing me a purpose to life and guiding me through its many, and varied, joys and tribulations.
LIST OF FIGURES