Parasites of the African painted dog (*Lycaon pictus*) in captive and wild populations: Implications for conservation

Amanda-Lee Ash
Bachelor of Animal and Veterinary Biosciences (Hons)
La Trobe University, Victoria

Faculty of Health Sciences
School of Veterinary and Biomedical Sciences
Murdoch University
Western Australia

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2011
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any other tertiary educational institution.

……………………………..

Amanda-Lee Ash
Abstract

The African painted dog (*Lycaon pictus*) is a highly endangered carnivore of sub-Saharan Africa, which in the last century has suffered a population decline of almost 99%. With only 3,000-5,500 animals remaining in the wild it is imperative to understand all threatening processes to which these animals may be exposed. The impact that parasites and other infectious agents have on wildlife has been increasingly recognized within conservation programs. Stressors such as human encroachment and habitat destruction are altering the incidence and effect that these pathogens have on wildlife populations, especially those endangered and under stress.

A parasitological study was conducted on captive and wild populations of the African painted dog over a three year period. Collaborations with three captive animal facilities and three *in situ* conservation groups within Africa allowed for a broad sample base from which variation in parasite prevalence and diversity could be identified. A combination of traditional microscopy techniques and molecular characterisation of parasite species were employed to obtain comprehensive data on the prevalence and diversity of gastrointestinal parasites observed in faecal samples collected from painted dogs.

Parasite prevalence within wild populations was 99% with a similar parasite community composition observed among all three wild populations. Five of the seven parasite genera observed in this study have not been reported before in this host. Additionally, molecular characterisations identified the potentially zoonotic species *Giardia duodenalis, Ancylostoma braziliense* and an ambiguous species of taeniid, all of which have also not been previously reported in this host.
The prevalence of parasites within captive populations was 15% with *Giardia duodenalis* being the dominant of the only two parasite species observed. The overall lack of prevalence and diversity of parasites observed in captive populations could be of significance for facilities involved in reintroduction programs. Particularly as immunologically naïve captive animals may be unable to cope with exposure to a ‘natural’ parasite load in the wild environment, leading to an ultimate decrease in reintroduction success.

Gastrointestinal parasites detected in faecal samples from wild and captive populations of the African painted dog during this study

<table>
<thead>
<tr>
<th>Parasite Taxon observed</th>
<th>Wild</th>
<th>Captive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Taeniid</td>
<td>Giardia</td>
</tr>
<tr>
<td></td>
<td>Ancylostoma</td>
<td>Spirometra</td>
</tr>
<tr>
<td></td>
<td>Spirometra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giardia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coccidia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sarcocystis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filaroides</td>
<td></td>
</tr>
</tbody>
</table>

This study has obtained detailed baseline data of parasitism within populations of the African painted dog in captive and wild environments. The large proportion of new discoveries in this study demonstrates the paucity of information currently available on parasitism within this host species. It is hoped this information will assist in conservation efforts by a) recognising the challenges of parasite control in captive populations, particularly those involved in reintroduction and/or translocation programs, and b) being able to identify deviations from baseline parasite levels in wild populations which could be indications for emerging exotic and/or zoonotic disease.
Publications

Refereed journal articles:

Conferences

Acknowledgements

I would firstly like to thank my three supervisors, Andy Thompson, Alan Lymberry and John Lemon for their invaluable guidance throughout this project.

Secondly, the fabulous field assistance given by the staff of the Zambian Carnivore Project (Matt Becker, Egil Droge and Claire Harrision) and the Wild Dog Project (Robin Lines and Anna) for making my forays into deepest Africa a little less daunting. I now have the ability to navigate rough muddy roads in various 4WD vehicles and deal with angry elephants, hungry hyaena, thieving baboons and the ever present lion all in the quest for African painted dog poo. Additionally the staff at DeWildt wildlife trust (Alan and Gabby) for assistance and protection in roaming occupied enclosures for samples, whilst also chasing cheetah out of trees. And of course the keepers and vets at Perth and Monarto zoo.

Thirdly, the assistance I was given in the lab was lifesaving. I was fortunate in having access to expertise from various people including Cath Covacin, Aileen Elliot, Russ Hobbs and Louise Pallant, all of which made my task that much easier. Additionally, the post-grad office crowd were always available for a little light comic relief.

And finally, to all my family and friends who tried not to think I was completely mad for taking on a doctorate and for R who was a calming influence during the rough and rocky patches of field work, lab work and write up.
Chapter 1 Introduction .. 1

1.1 Parasites in wildlife ... 2

1.2 Importance of parasites in conservation ... 2

1.2.1 Direct impacts ... 4

1.2.2 Indirect impacts ... 8

1.2.3 Co-extinction events/biodiversity considerations ... 11

1.2.4 Assessing effects of human influences ... 12

1.3 The host, the African painted dog (Lycaon pictus) ... 14

1.3.1 Ecology of the African painted dog .. 15

1.3.2 Conservation issues for the African painted dog ... 16

1.4 Parasites and the African painted dog ... 17

1.4.1 Host ecology and parasites ... 17

1.4.2 Parasites recorded from the African painted dog ... 18

1.4.3 Gaps in current knowledge of parasitism in the African painted dog 20

1.5 Management of wild species ... 21
Chapter 1

1.5.1 Captive environments .. 21
1.5.2 Reintroduction programs ... 23
1.5.3 Translocation programs .. 23

1.6 Goals for this study ... 24

Chapter 2 General materials and methods .. 27

2.1. Study design .. 28

2.2 Captive populations ... 29

2.2.2 Perth Zoo ... 29
2.2.3 Monarto Zoo .. 31
2.2.3 DeWildt Wildlife Trust .. 32

2.3 Wild populations .. 33

2.3.1 South Luangwa National Park – Zambia .. 33
2.3.2 Nyae Nyae Conservancy – Namibia ... 35
2.3.3 Hwange National Park – Zimbabwe .. 36

2.4 Sampling methodology .. 37

2.4.1 Ethics and permits .. 38
2.4.2 Locating packs .. 39
2.4.3 Sample collection .. 40
2.4.4 Sample movement ... 41

2.5 Parasitological techniques .. 42

2.5.1 Microscopy; qualitative analysis ... 42
2.5.2 Microscopy; quantitative analysis ... 44
2.5.3 Molecular characterisation .. 45
Chapter 3 Diversity and prevalence of gastrointestinal parasite fauna within captive and wild populations of the African painted dog

3.1 Introduction

3.2 Materials and methods

3.2.1 Sampling protocol

3.2.2 Parasite identification and quantification

3.2.3 Host and environmental variables

3.2.4 Data analysis

3.2.4.1 Descriptors used

3.2.4.2 Levels of testing

3.2.4.3 Statistical analysis

3.3 Results

3.3.1 Variation between captive and wild populations

3.3.2 Variation between packs

3.3.3 Variation among different geographic locations

3.3.4 Variation between different seasons

3.3.5 Variation between host age and sex

3.3.6 Parasite aggregation within hosts

3.4 Discussion

3.4.1 Parasite diversity

3.4.2 Influence of geographic, seasonal and demographic factors

3.4.3 Parasites of wild and captive populations

3.4.4 Conclusions

Chapter 4 Molecular epidemiology of Giardia duodenalis in an endangered carnivore – the African painted dog

4.1 Introduction
4.2 Materials and methods ... 75

4.2.1 Sample collection .. 75
4.2.2 Parasitological techniques .. 75
4.2.3 DNA extraction ... 76
4.2.4 Amplification of 18S rRNA locus ... 76
4.2.5 Amplification of β-giardin locus .. 77
4.2.6 Amplification of the glutamate dehydrogenase locus 78
4.2.7 Data analysis ... 79

4.3. Results ... 80

4.3.1 Prevalence of infection ... 80
4.3.2 Molecular characterization of *Giardia duodenalis* isolates 81

4.4. Discussion .. 84

4.4.1 Conclusions ... 89

Chapter 5 Hookworm species of the African painted dog and the significance of infection ... 90

5.1 Introduction .. 91

5.1.1 Hookworm in the canid host ... 92
5.1.2 The zoonotic potential of canid hookworm species 93
5.1.3 Hookworm in the African painted dog and other carnivores in Africa ... 94
5.1.4 Diagnosing hookworm infections ... 95

5.2 Materials and methods ... 96

5.2.1 Sample collection .. 96
5.2.2 Parasitological techniques .. 96
5.2.3 DNA extraction .. 97
5.2.4 Amplification of *Ancylostoma* spp. isolates at the ITS1 and ITS2 regions .. 97
5.2.5 Data analysis ... 98
5.3 Results ... 98

5.3.1 Prevalence of infection ... 98
5.3.2 Molecular characterisation of Ancylostoma spp. isolates .. 100

5.4 Discussion .. 101

5.4.1 Conclusions .. 106

Chapter 6 Detecting Taenia species of the African painted dog 108

6.1 Introduction .. 109

6.2 Materials and methods .. 114

6.2.1 Sample collection ... 114
6.2.2 Parasitological techniques .. 115
6.2.3 Identification of proglottids ... 115
6.2.4 DNA extraction .. 116
6.2.5 Amplification of Taeniid isolates at the 12S rRNA locus ... 116
6.2.6 Data analysis .. 117

6.3 Results ... 118

6.3.1 Prevalence of Infection ... 118
6.3.2 Identification of taeniid spp. proglottids .. 120
6.3.3 Molecular characterisation of taeniid sp. isolates .. 121
6.3.4 Phylogenetic analysis of Taenia spp. isolates .. 124

6.4 Discussion .. 125

6.4.1 Conclusions .. 129

Chapter 7 General discussion ... 130

7.1 Conservation status of the African painted dog.. 131

7.2 Increasing importance of studies of parasites ... 131
7.3 Parasitological techniques ...132
7.4 Implications for biodiversity conservation ..133
7.5 Parasitism in natural populations ..134
 7.5.1 Baseline data ...134
 7.5.2 Parasite threats to painted dogs ..135
 7.5.3 Zoonoses/anthropozoonoses ..136
7.6 Parasitism in captive populations ..137
7.7 Project limitations and future research ...138
 7.7.1 Sample collection and analysis ..138
 7.7.2 Continued surveillance ...139
 7.7.3 Threat of emerging disease ..140
 7.7.4 Captive management ..140

Appendix 1. Taenia spp. proglottid key. From Verster (1969)142

References ...143
List of Tables

Table 1.1 An overview of the major factors of the host/parasite relationship.
Positive effects are those that are assumed to be beneficial to an individual or population of hosts; negative effects are assumed to be harmful to an individual or population of hosts…………………………………………………………………………….4

Table 1.2 A brief natural history of parasites observed in the African painted dog……………………………………………………………………………19-20

Table 3.1 Number of faecal samples obtained from all captive and wild populations during the study period………………………………………………….50

Table 3.2 A hierarchical list of comparisons made between host groups with descriptions of the data used at each level……………………………………54

Table 3.3 The prevalence (with 95% confidence intervals in parentheses) and diversity of GI parasites detected in faecal samples from all captive and wild populations of the African painted dog……………………………………57

Table 3.4 Prevalence (with 95% confidence intervals in parentheses) of GI parasites detected in faecal samples from two packs within the Zambian study population……………………………………………………………….58

Table 3.5 The overall prevalence (with 95% confidence intervals in parentheses) and diversity of GI parasites detected in faecal samples from three wild populations - Zambia, Zimbabwe and Namibia…………………………61
Table 3.6 Prevalence of the main GI parasites (with 95% confidence intervals in parentheses) detected in faecal samples from all wild populations in wet and dry seasons………………………………………………………………62

Table 3.7 Aggregation of parasite species within host populations in Zambia, Namibia and Zimbabwe using the Index of Discrepancy values (D)….65

Table 3.8 GI parasite genera observed in this study and in the published literature………………………………………………………………65

Table 4.1 Prevalence of *Giardia duodenalis* (with 95% confidence intervals in parentheses) detected in faecal samples from captive and wild populations of the African painted dog………………………………80

Table 4.2 Genotypic characterisation of *Giardia duodenalis* isolates from individual African painted dogs at the18S rRNA, β-giardin and gdh loci. * Wild animals over 2yrs of age were allocated as Adult…………………..82

Table 4.3 Prevalence (with 95% confidence intervals in parentheses) and genotypic characterisation of *Giardia* isolates obtained in a captive population of African painted dogs over a three year period………………83

Table 4.4 Assemblages of *Giardia duodenalis* observed in both wild canids and domestic dogs noted in the literature and this study. Number of times reported in literature is presented as (r=)……………………………………86

Table 5.1 Prevalence of *Ancylostoma* spp. (with 95% confidence intervals in parentheses) detected in faecal samples from captive and wild populations of the African painted dog………………………………99
Table 5.2 Prevalence of *Ancylostoma* spp. observed in the Zambian and Namibian populations of the African painted dog over a three year period. Sample size (n) and 95% confidence intervals in parentheses

Table 5.3 Genotypic characterisation of *Ancylostoma* spp. isolates obtained from wild populations of the African painted dog within Zambia and Namibia. Percentages for matched identities with published sequences in parentheses

Table 5.4 Summary of the nucleotide variations detected between the painted dog isolate from Zambia (Z-Ka01) and reference sequences for *A. caninum* and *A. duodenale*. Alignment was conducted in Sequencher™ 4.8 and dots indicate identity with the first sequence

Table 6.1 Definitive and intermediate hosts of *Taenia* spp. infecting African carnivores

Table 6.2 Prevalence of taeniids (with 95% confidence intervals in parentheses) detected in faecal samples from wild populations of the African painted dog

Table 6.3 Prevalence of taeniids observed in the Zambian and Namibian populations of the African painted dog over a three year period. Sample size (n) and 95% confidence intervals in parentheses

Table 6.4 Species identification of taeniid proglottids obtained from painted dog populations

Table 6.5 Genotypic characterisation of taeniid spp. species isolates obtained from wild populations of the African painted dog within Zambia, Namibia
and Zimbabwe. Percentages for matched identities with published sequences on GenBank in parentheses……………………………….122

Table 6.6 Summary of the nucleotide variations detected between taeniid isolates from Zambian and Namibian populations of the African painted dog and reference sequences for *T. multiceps* and *T. serialis* (GenBank accession numbers GQ228818, DQ408418 and EU219546, DQ104238). Alignment was conducted in Sequencher™ 4.8 and dots indicate identity with the first sequence………………………………………………………………123

Table 6.7 Pairwise comparison of sequence variation (%) within the 12S rRNA loci of *T. multiceps* and *T. serialis* reference sequences and taeniid isolates obtained from Namibian and Zambian populations of the African painted dog………………………………………………………………124
List of Figures

Figure 2.1 Location of painted dog study sites within Australia………………….29

Figure 2.2 Painted dog exhibit at Perth Zoo showing the water feature and animals resting in the shade…………………………………………………………………….30

Figure 2.3 Painted dog exhibit at Monarto zoo showing the animals in the large fenced enclosure……………………………………………………………………………31

Figure 2.4 Painted dog enclosure at DeWildt Wildlife Trust showing grassy and shady environment…………………………………………………………………32

Figure 2.5 Locations of the painted dog study populations within Africa……..33

Figure 2.6 South Luangwa National Park, Zambia. Open grassland area with acacia and mopane woodland in the background, which is typical of the habitat frequented by painted dog populations………………………………………34

Figure 2.7 Nyae Nyae Conservancy, Namibia. One of the few sandy roads available to use, surrounded by thick grass and acacia trees………………….35

Figure 2.8 Game managed area of Hwange National Park, Zimbabwe. Open area with miombo woodland and acacia in the background, typical for painted dog habitat………………………………………………………………….37

Figure 2.9 The left and right side views of an individual painted dog from the Katete pack in Zambia. ID number P3 0308……………………………………40

Figure 2.10 Parasite ova of taeniid spp. and Giardia spp. cysts observed during microscopy analysis of painted dog faecal samples. Morphology and
size are substantially different between the two genera, allowing for unambiguous identification.................................43

Figure 3.1 Parasite load (N), species richness (S) and species evenness (H) in captive and wild populations of the African painted dog.............56

Figure 3.2 Parasite load (N), species richness (S) and species evenness (H) in two packs within the Zambian study population..............................59

Figure 3.3 A multidimensional scaling plot of data from two African painted dog packs within the Zambian population based on Bray-Curtis similarity coefficients of parasite infracommunity composition..................59

Figure 3.4 Parasite load (N), species richness (S) and species evenness (H) in three wild populations of the African painted dog.........................60

Figure 3.5 Parasite load (N), species richness (S) and species evenness (H) between wet and dry seasons in all wild populations of the painted dog........63

Figure 3.6 A multidimensional scaling plot of data from wet and dry environments of three wild populations based on Bray-Curtis similarity coefficients of parasite infracommunity..63

Figure 5.1 Depiction of the lifecycle of *Ancylostoma caninum* in domestic dogs adapted from www.Apaws.org...92

Figure 6.1. The lifecycle of a taeniid species depicting the transmission cycle between predator (definitive host) and prey (intermediate host)......111

Figure 6.2 A depiction of the genital atrium of *T. crocutae* as an example of the morphological features used in identification of proglottids. From Verster (1969). Appendix 1 displays the proglottid key used for identifying samples obtained in this study...............................116
Figure 6.3 Multiplex PCR of taeniid isolates from wild painted dog populations at the 12S rRNA locus. Lanes 2-11 are painted dog samples from Zambia and Namibia. Lane 13 is the negative control; 14-16 are the positive controls for *Taenia sp.*, *E. granulosis* and *E. multilocularis*.

Figure 6.4 Phylogenetic relationships, inferred using the Neighbour-joining method between taeniid isolates from African painted dogs and reference isolates of *T. multiceps* and *T. serialis* based on sequence data of the 12S rRNA locus. Representatives of *Taenia* sp. used for comparison are labelled with accession numbers as published on GenBank, with *E. granulosus* as the out-group. Numbers at nodes refer to bootstrap values (1500 replicates) > 20%.