DETECTION AND CHARACTERIZATION OF
BARTONELLA SPECIES IN WESTERN AUSTRALIA

Gunn Kaewmongkol, DVM, MSc

School of Veterinary and Biomedical Sciences, Faculty of Health Sciences, Murdoch University, Perth, Western Australia

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University,
2012
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

..

(Gunn Kaewmongkol)
Abstract

In this study, the prevalence and genetic diversity of *Bartonella* species in various arthropod vectors from both wild and domestic animals in Australia were investigated using nested-polymerase chain reaction (PCR) assays and multilocus sequence analysis (MLSA). Previous studies on *Bartonella* species in Australia have been confined to mammalian hosts, including humans, cats, native rodents and eastern grey kangaroos. However, little is known about the status of bartonellae in arthropod vectors, which is essential in understanding the transmission dynamics of the organisms.

To facilitate the investigation, ectoparasites (ticks and fleas) were collected from both wild and domestic animals from various locations in Australia. All ectoparasites were screened for *Bartonella* species using newly designed nested-PCRs targeting the *gltA* gene (citrate synthase) and the ribosomal internal transcribed spacer (ITS) region, developed as part of the present study. Multilocus sequence analysis of the 16S ribosomal RNA (rRNA), citrate synthase (*gltA*), cell division protein (*ftsZ*) and RNA polymerase beta-subunit (*rpoB*) genes and the ribosomal ITS region was applied to identify and confirm the status of all *Bartonella* species identified in this study. Multilocus sequence analysis of the cytochrome oxidase subunit I (*COI*) and 18S ribosomal RNA (rRNA) genes of flea vectors harbouring a diversity of *Bartonella* species were analysed to characterize the extent of genetic diversity in the flea vectors and to elucidate vector-parasite associations.

A phylogenetic analysis of the 5 concatenated loci identified 3 novel *Bartonella* species in flea vectors from marsupials in Western Australia. *Candidatus* Bartonella antechini was detected in fleas (*Acanthopsylla jordani*) from mardos (*Antechinus flavipes* - also
called the yellow-footed antechinus). *Candidatus* Bartonella woyliei was detected in fleas (*Pygiopsylla hilli*), from brush-tailed bettongs (*Bettongia penicillata*– also called woylies), and *Candidatus* Bartonella bandicootii was detected in *Pygiopsylla tunneyi* fleas from western barred bandicoots (*Perameles bougainville*). Furthermore, a potential novel species, *Bartonella* sp. strain WC2 was detected in ticks (*Ixodes australiensis*) from woylies based on the criterion of a genetic similarity of less than 96% of the *gltA* locus compared with other validated *Bartonella* species. In the present study, the grouping of marsupial-derived *Bartonella* species confirmed the existence of a marsupial cluster of *Bartonella* species in Australia, which appears to have evolved separately to *Bartonella* species in other mammals.

The detection of the known zoonotic *Bartonella* species, *B. henselae* and *B. clarridgeiae* in red foxes and their fleas (*Ctenocephalides felis*), indicated that red foxes could be an important reservoir of *Bartonella* infections for other animals and humans in the same geographical locality. *Bartonella henselae* and *B. clarridgeiae* DNA were also detected from fleas collected from pet cats in the same area. The genetic association of these zoonotic *Bartonella* species detected in wildlife and pet animals has demonstrated and confirmed the distribution of zoonotic *Bartonella* species in fleas from both wild and domestic animals in this region and a possible ecological association between the animal species.

The genetic clustering of *Bartonella* species and flea vectors with their Australian fauna hosts suggests co-evolution of hosts, fleas and *Bartonella* species in Australia. In conclusion, the close association between Australian fauna, Australian fleas and *Bartonella* species suggests adaptation by *Bartonella* species to a specific ecological
niche, comprised of specific mammalian hosts and specific flea vectors in particular environments.
Acknowledgments

I am deeply indebted to my supervisors, Professor Stan Fenwick, Associate Professor Peter Irwin and Professor Una Ryan for all their help and support throughout my Ph.D. study. Most specially, I would like to thank Professor Stan Fenwick, my principal supervisor for his enthusiasm, wonderful guidance and his patience to me over the last three years of my study.

My research could not have been adequately carried out without the devoted and dedicated help from Associate Professor Peter Irwin, my co-supervisor. This research was made possible by the most generous support in all laboratory techniques provided in the Molecular Epidemiology research team, School of Veterinary and Biomedical Sciences, Murdoch University by its director, Professor Una Ryan, my co-supervisor. I would especially like to thank her for every available help and valuable suggestions. The members of this research team gave me the most generous help in everything.

To the members of the Molecular Epidemiology group, I would like to thank Dr. Linda McInnes, Dr. Rongchang Yung, Josephine Ng and Josh Sweeney for all their support. I am also thankful for help and friendship from the ‘trailer trash’ members, Dr. Peter Adams, Dr. Louise Pallant, Dr. Michael Banazis, Dr. Yazid Abdad and Dr. Jim Carro Domingo who have made my study at Murdoch University both enjoyable and entertaining. I would also like to thank Professor John Edwards who gave me a great opportunity to pursue my Ph.D. study at Murdoch University. This study was supported by the grants from the Australian Companion Animal Health Foundation (ACAHF) and the Morris Animal Foundation (MAF).
Finally, I would like to acknowledge my wife, Dr. Sarawan Kaewmongkol, for her guidance in advance molecular techniques and especially for her love, support and patience all the time.

In these acknowledgments, I cannot conclude without describing my respect and admiration for my father, Dr. Surapol Kaewmongkol, who is my greatest teacher. He has supported and encouraged me in both my work and my life without complaint and possibly, with pleasure. My Ph.D. study could not be completed without his support and encouragement.

Gunn Kaewmongkol
February 2012
Publications

Peer-reviewed publications and conference proceedings

Gunn Kaewmongkol, Sarawan Kaewmongkol, Halina Burmej, Mark D. Bennett, Patricia A. Fleming, Peter J. Adams, Adrian F. Wayne, Una Ryan, Peter J. Irwin, Stanley G. Fenwick. Diversity of *Bartonella* species detected in arthropod vectors from
Table of contents

Title page.. i
Declaration... ii
Abstract.. iii
Acknowledgments.. vi
Table of Contents.. x
List of Tables... xiii
List of Figures... xv

CHAPTER 1. General introduction to Bartonella species................................. 1

1.1 Overview and Historical Aspects of Bartonella species................................. 1

1.2 Arthropod vectors.. 5

1.2.1 Bartonella bacilliformis transmitted by sandflies.............................. 6

1.2.2 Bartonella quintana transmission by lice... 6

1.2.3 Bartonella species transmitted by fleas... 7

1.2.4 Bartonella species transmitted by other arthropods..................... 8

1.2.5 Bartonella species transmitted by ticks... 9

1.3 Bartonella species in dogs.. 14

1.3.1 Clinical evidence for Bartonella infection in dogs......................... 17

1.3.2 Treatment of Bartonella infection in dogs.................................. 21

1.3.3 Epidemiological studies of Bartonella infection in dogs............... 22

1.4 Diagnosis of Bartonella species in humans, dogs, and cats............... 26

1.4.1 Serological assays... 26

1.4.2 Culture of genus Bartonella... 29

1.4.3 PCR assays.. 34

1.5 Genetic-based analysis for species identification in genus Bartonella.... 38
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>Bartonella species in wild animals and their ectoparasites</td>
<td>42</td>
</tr>
<tr>
<td>1.7</td>
<td>Bartonella species in Australia</td>
<td>44</td>
</tr>
<tr>
<td>1.8</td>
<td>Objectives</td>
<td>45</td>
</tr>
<tr>
<td>2.1</td>
<td>Ectoparasite collection and identification</td>
<td>46</td>
</tr>
<tr>
<td>2.2</td>
<td>DNA extraction</td>
<td>53</td>
</tr>
<tr>
<td>2.3</td>
<td>PCR detection of Bartonella species</td>
<td>53</td>
</tr>
<tr>
<td>2.4</td>
<td>PCR for phylogenetic analysis at additional loci</td>
<td>55</td>
</tr>
<tr>
<td>2.5</td>
<td>Agarose gel electrophoresis and PCR product purification</td>
<td>56</td>
</tr>
<tr>
<td>2.6</td>
<td>DNA sequencing and phylogenetic analysis</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and Methods</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Discussion</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials and Methods</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Results</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Discussion</td>
<td>78</td>
</tr>
</tbody>
</table>
List of Tables

Table 1.1 Bartonella species infections in humans.. 3
Table 1.2 Confirmed vectors for Bartonella spp.. 11
Table 1.3 Suspected vectors for Bartonella spp... 12
Table 1.4 Bartonella species infections in dogs... 15
Table 1.5 Antibiotics used in dogs to treat Bartonella infection.. 24
Table 1.6 Clinical signs that indicate laboratory testing for Bartonella infection in dog... 25
Table 1.7 Semisolid media used for Bartonella culture... 33
Table 1.8 PCR assays targeting various genes for Bartonella detection............................. 36
Table 2.1 Numbers and species of ectoparasites collected from mammalian hosts in Western Australia in the present study... 48
Table 2.2 Hosts from which ectoparasites were collected in various locations in Western Australia.. 49
Table 2.3 Oligonucleotide primers used for nested-PCR and single step PCR amplifications of the 16S rRNA, gltA, ftsZ, rpoB loci and the ribosomal ITS region.... 58
Table 2.4 Genbank accession numbers of Bartonella species used for the concatenated phylogenetic analysis.. 59
Table 2.5 GenBank accession numbers of Bartonella species discovered in possible arthropod vectors from animals in Western Australia in the present study............... 60
Table 3.1 Percentage genetic similarity of the concatenated sequences from Candidatus Bartonella antechini n. sp. compared with other confirmed Bartonella spp.............. 65
Table 5.1 Number of fleas, pooled flea DNA, blood samples and Bartonella spp. collected from two locations in Western Australia... 84
Table 6.1 Number of samples and animals examined for Bartonella species in Australia.. 94
Table 7.1 Flea species collected from a variety of locations in Western Australia...... 107

Table 7.2 GenBank accession numbers of flea species from animals in Australia...... 110
List of Figures

Fig. 2.1 Map of Western Australia demonstrating sample collection sites including Dwellingup, Boyup Brook, Katanning, Kendenup and Fitzgerald River National Park... 50

Fig 2.2 Map of the Southern Forest, Western Australia................................. 51

Fig. 2.3 Map of Dorre and Bernier Islands.. 52

Fig. 3.1 Neighbor-Joining concatenated phylogenetic tree of the 16S rRNA, gltA, ftsZ, rpoB, and the ITS region of Australian marsupial isolates and validated species and subspecies of Bartonella. Percentage bootstrap support (>50%) from 1000 pseudoreplicates is indicated at the left of the supported node................................. 66

Fig. 3.2 Maximum-Parsimony concatenated phylogenetic tree of the 16S rRNA, gltA, ftsZ, rpoB, and the ITS region of Australian marsupial isolates (B. australis and Candidatus B. antechini) and validated species and subspecies of Bartonella. Percentage bootstrap support (>50%) from 1000 pseudoreplicates is indicated at the left of the supported node... 67

Fig. 4.1 Neighbor-Joining phylogenetic tree of the gltA gene of Bartonella species detected in Australian marsupials and validated species and subspecies of Bartonella. Percentage bootstrap support (>40%) from 1000 pseudoreplicates is indicated at the left of the supported node.. 76

Fig. 4.2 Neighbor-Joining concatenated phylogenetic tree of the 16S rRNA, gltA, ftsZ, rpoB, and the ITS region of Bartonella species detected in Australian marsupials and validated species and subspecies of Bartonella. Percentage bootstrap support (>60%) from 1000 pseudoreplicates is indicated at the left of the supported node................. 77

Fig. 5.1 Red fox carcasses shot by volunteers and farmers as part of the ‘Red Card for the Red Fox’ 2010 culling program coordinated by the Department of Agriculture and Food, Western Australia... 83
Fig. 5.2 Neighbor-Joining concatenated phylogenetic tree of the 16S rRNA, \textit{gltA}, \textit{ftsZ}, \textit{rpoB}, and the ITS region of \textit{Bartonella henselae} and \textit{Bartonella clarridgeiae} isolates in red foxes. Percentage bootstrap support (>45%) from 1000 pseudoreplicates is indicated at the left of the supported node... 87

Fig. 5.3 Neighbor-Joining phylogenetic tree of the ITS region of \textit{Bartonella henselae} isolates. Percentage bootstrap support (>45%) from 1000 pseudoreplicates is indicated at the left of the supported node... 88

Fig. 5.4 Neighbor-Joining phylogenetic tree of the ITS region of \textit{Bartonella clarridgeiae} isolates. Percentage bootstrap support (>45%) from 1000 pseudoreplicates is indicated at the left of the supported node... 89

Fig. 6.1 Aortic valve endocarditis in a dog suspected to have \textit{Bartonella} infection….. 96

Fig. 6.2 Neighbor-Joining phylogenetic tree of the ITS region of \textit{Bartonella clarridgeiae} isolates. Percentage bootstrap support (>40%) from 1000 pseudoreplicates is indicated at the left of the supported node... 98

Fig. 6.3 Neighbor-Joining phylogenetic tree of the ITS region of \textit{Bartonella henselae} isolates. Percentage bootstrap support (>40%) from 1000 pseudoreplicates is indicated at the left of the supported node... 99

Fig. 7.1 Neighbor-Joining concatenated phylogenetic tree of the 18S rRNA, and \textit{COI} genes of flea species and their associated \textit{Bartonella} species from marsupials and other mammals in Australia. Percentage bootstrap support (>40%) from 1000 pseudoreplicates is indicated at the left of the supported node. The tree is rooted using \textit{Calliphora vomitoria} (Blue bottle fly) as an outgroup.. 111
Fig. 7.2 Neighbor-Joining concatenated phylogenetic tree of 16S rRNA, gltA, ftsZ, rpoB, and the ITS region of *Bartonella* species showing the separate clustering of *Bartonella* spp. from Australian marsupials and *B. rattaustraliani* and *B. coopersplainsensis* from native Australian rodents. Percentage bootstrap support (>60%) from 1000 pseudoreplicates is indicated at the left of the supported node. 112

Fig. 8.1 Native host-vector-parasite interactions and non-native interferences. 122