
It is posted here for your personal use. No further distribution is permitted.
Men, Mice and Maltese Crosses

Discovery and Implications of *Babesia microti* in Australia

Peter Irwin, Sanjaya Senanayake, Andrea Paparini
School of Veterinary & Biomedical Sciences, Murdoch University
&
Australian National University and the Canberra Hospital
Babesiosis

Vector-borne protozoal disease
- Vectors: Ticks
- Vertebrate hosts: Mammals (and birds)

Highly adapted host-vector-pathogen ecologies
- Wildlife and domesticated animals

In Australia

Introduced:
- Bovine babesiosis
 - *B. bovis*
 - *B. bigemina*

Canine babesiosis
- *B. canis vogeli*
- *B. gibsoni*

Native animals:
- Approx. 10-15 *Babesia* and *Theileria* parasites recorded from marsupials:
 - Limited data and virtually no molecular taxonomy
Zoonotic Babesiosis

Emerging disease

B. microti
- Diverse species complex
- Northern Hemisphere distribution
 - USA – Europe – Asia
- *Ixodes* spp. tick vectors
- Small mammal (rodent) hosts

B. divergens (Europe & USA)
B. venatorum (Europe)
B. duncani (USA)
B. conradae (USA)
And others...
Zoonotic Babesiosis in Australia

Diagnosed in Canberra, the patient had lived on the **south coast of NSW** for many years.

Identified as *Babesia microti*

Morphology

18S rRNA gene sequence

No history of travel to endemic regions, no prior blood transfusion and no IV drug use.

Where did the organism originate?

How was this man infected?
Zoonotic Babesiosis in Australia – how?

1. Tick from North America?
2. Australian tick(s)?
 (e.g. *Ixodes holocyclus, I. tasmani*)

Vertebrate (mammal) reservoir?
1. Introduced (alien) rodents
 (e.g. black rats, Norwegian rats)
2. Native rodents
 (e.g. bush rats, swamp rats)
3. Small marsupials
 (e.g. *Antechinus*)

Infected “recently” with *B. microti*
Zoonotic Babesiosis in Australia – Possible Implications

If a N. American tick – minimal implications
If a true autochthonous infection:

• Locally established in certain ecological niches?
 • Is it one of the Babesia/Theileria parasites previously described?

• Is it causing other (undiagnosed) cases of tick-transmitted babesiosis?
 • e.g. fever, malaise, headache, chills, splenomegaly

• May it represent a risk of transfusion-transmitted babesiosis (TTB)?
 • Most common transfusion-transmitted infection reported to FDA

• May be co-transmitted with other tick-borne pathogens such as Rickettsia and others not yet confirmed but increasingly suspected?
 • Anaplasma spp. (A. phagocytophilum → human granulocytic anaplasmosis)?
 • Ehrlichia spp. (E. chaffeensis & E. ewingii) → human ehrlichiosis?
 • Borrelia spp. → Lyme borreliosis?
Future Directions?

• Many questions and speculation: more evidence is required

• Tick-borne disease in Australia requires new research!

Acknowledgement is given to all involved in the reporting of *B. microti* in Australia.