Mycorrhizal specificity in endemic Western Australian terrestrial orchids (tribe Diurideae): Implications for conservation

Penelope Sarah Hollick
BSc (Hons)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University
2004
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Penelope Sarah Hollick
Abstract

The specificity of fungal isolates from endemic Western Australian orchid species and hybrids in the tribe Diurideae was investigated using symbiotic seed germination and analysis of the fungal DNA by amplified fragment length polymorphism (AFLP). The distribution of the fungal isolates in the field was also assessed using two different seed baiting techniques. The information from these investigations is essential for developing protocols for reintroduction and translocation of orchid species.

Two groups of orchids in the tribe Diurideae were studied. Firstly, a number of Caladenia species, their natural hybrids and close relatives from the southwest of Western Australia were selected because orchid species from the genus Caladenia are considered to have among the most specific mycorrhizal relationships known in the orchid family – an ideal situation for the investigation of mycorrhizal specificity. Secondly, species of Drakaea and close relatives, from the southwest of Western Australia and elsewhere in Australia, which are never common in nature and occur in highly specialised habitats, were selected to investigate the influence of habitat on specificity.

Seed from the common species Caladenia arenicola germinated on fungal isolates from adult plants of both C. arenicola and its rare and endangered relative C. huegelii, while seed from C. huegelii only germinated on its own fungal isolates. The AFLP analysis grouped the fungal isolates into three categories: nonefficaceous fungi, C. huegelii type fungi, and C. arenicola type fungi. The group of C. huegelii type fungi included some fungal isolates from C. arenicola. An analysis of the AFLP fingerprints of C. arenicola fungal isolates from different collection locations showed that some, but not all, populations were genetically distinct, and that one population in particular was very variable.

Despite being thought to have very specific mycorrhizal relationships, Caladenia species hybridise frequently and prolifically in nature, often forming self-perpetuating hybrid lineages. Five natural hybrids within Caladenia and its closest relatives were investigated. Symbiotic cross-germination studies of parental and hybrid seed on fungi from the species and the naturally occurring hybrids were compared with AFLP
analyses of the fungal isolates to answer the question of which fungi the hybrids use. The germination study found that, while hybrid seeds can utilise the fungi from either parental species under laboratory conditions, it is likely that the natural hybrids in situ utilise the fungus of only one parental species. Supporting these observations, the AFLP analyses indicated that while the parental species always possessed genetically distinct fungal strains, the hybrids may share the mycorrhizal fungus of one parental species or possess a genetically distinct fungal strain which is more closely related to the fungus of one parental species than the other.

The work on *Caladenia* hybrids revealed that *C. falcata* has a broadly compatible fungus that germinated seeds of *C. falcata*, the hybrid *C. falcata x longicauda*, and species with different degrees of taxonomic affinity to *C. falcata*. In general, germination was greater from species that were more closely related to *C. falcata*: seeds from *Caladenia* species generally germinated well on most *C. falcata* isolates; species from same subtribe (Caladeniinae) germinated well to the stage of trichome development on only some of the fungal isolates and rarely developed further; and seeds from species from different subtribes (Diuridinae, Prasophyllinae, Thelymitrinae) or tribes (Orchideae, Cranichideae) either germinated well to the stage of trichome development but did not develop further, or did not germinate at all. The AFLP analysis of the fungal isolates revealed that the fungi from each location were genetically distinct.

In situ seed baiting was used to study the introduction, growth and persistence of orchid mycorrhizal fungi. A mycorrhizal fungus from *Caladenia arenicola* was introduced to sites within an area from which the orchid and fungus were absent, adjacent to a natural population of *C. arenicola*. In the first growing season, the fungus grew up to 50 cm from its introduction point, usually persisted over the summer drought into the second season and even into the third season, stimulating germination and growth to tuber formation of the seeds in the baits. Watering the inoculated areas significantly increased seed germination.

Mycorrhizal relationships in Drakaeinae were less specific than in Caladeniinae. A study of the species *Spiculaea ciliata* revealed that this species, when germinated symbiotically, develops very rapidly and has photosynthetic protocorms, unlike all
other members of the Drakaeinae. An AFLP analysis of the fungal isolates of this species grouped the isolates according to whether they had been isolated from adult plants or reisolated from protocorms produced in vitro. Isolates were genetically distinct when compared before germination and after reisolation. A cross-species symbiotic germination study of seeds of three Drakaea species and one Paracaleana species against fungal isolates from the same species and several other Drakaeinae species revealed lower specificity in this group than previously thought. A number of fungal isolates from Drakaea and Paracaleana species germinated two or more seed types, while all seed types germinated on fungal isolates from other species and the seed of Drakaea thynniphila germinated to some extent on every fungal isolate tested. An AFLP analysis of the Drakaeinae fungal isolates supported this information, revealing little genetic differentiation between the fungi of different orchid species.

An ex situ seed baiting technique was used to examine the role of mycorrhizal fungi in microniche specialisation in the narrow endemic Drakaea. Soil samples from within and outside two Drakaea populations were tested for germination of the relevant seed types. In both cases, germination was significantly higher on soil samples from within than outside the populations, suggesting that the relevant mycorrhizal fungi may be restricted to the same microniches as the Drakaea species. The presence of similar fungi at distant, disjunct locations may be related to the extreme age and geological stability of the Western Australian landscape.

The information from these investigations is essential for developing protocols for reintroduction and translocation of orchid species. It appears that the mycorrhizal relationships in these groups of orchids are not as specific as was previously thought. For reintroduction work, a broad sampling strategy is necessary, as it cannot be assumed that the same orchid species has the same fungus at different locations. A broadly compatible fungus may be of considerable utility in conservation work, such as in situations where a specific fungus appears to have poor saprophytic competence or where soil conditions have been altered. Seed baiting studies provide additional data on fungal distribution in situ. In general, molecular data do not provide information about efficacy or fungal distribution, so research programs that combine symbiotic germination studies with seed baiting investigations and genetic analyses of
the fungi will provide the maximum benefit for designing more effective conservation programs.
Contents

Chapter 1 – Introduction

1.1 – The family Orchidaceae
 1.1.1 – Conservation status of Orchidaceae
 1.1.2 – Western Australian orchids

1.2 – Fungal ecology and specificity
 1.2.1 – Orchid mycorrhizal associations
 1.2.2 – Fungal specificity
 1.2.3 – The saprophytic stage

1.3 – Phenology of infection
 1.3.1 – Orchid seed germination
 1.3.2 – Adult orchids

1.4 – Identity of orchid mycorrhizal fungi
 1.4.1 – Conventional taxonomy
 1.4.2 – Molecular techniques for taxonomy

1.5 – Thesis objectives

Chapter 2 – General methods

2.1 – Fungal isolation and culture
 2.1.1 – Collection of plant material
 2.1.2 – Fungal isolation
 2.1.3 – Fungal culture

2.2 – Symbiotic seed germination in vitro
 2.2.1 – Seed collection and storage
 2.2.2 – Seed germination in vitro

2.3 – Fungal DNA extraction

2.4 – Amplified fragment length polymorphism (AFLP)

2.5 – Sequencing

Chapter 3 – Mycorrhizal diversity and specificity in the Caladenia arenicola complex

3.1 – Introduction
 3.1.1 – The relationship between genetic variation in orchids and fungi
Chapter 5 – Investigation of broadly compatible mycorrhizal fungi from *Caladenia falcata* 71

5.1 – Introduction 71

5.1.1 – *Caladenia falcata* 71

5.1.2 – Objectives 73

5.2 – Materials and Methods 73

5.2.1 – Seed and inoculum sources, with site descriptions 73

5.2.2 – Symbiotic germination 77

5.2.3 – Statistics 78

5.2.4 – DNA extraction and amplified fragment length polymorphism (AFLP) 78

5.3 – Results 78

5.3.1 – Asymbiotic germination 78

5.3.2 – Symbiotic germination 78

5.3.3 – Amplified fragment length polymorphism (AFLP) 84

5.4 – Discussion 85

Chapter 6 – Mycorrhizal specificity in subtribe Drakaeinae 89

6.1 – Introduction 89

6.1.1 – The relationship between genetic variation in orchids and fungi 89

6.1.2 – The subtribe Drakaeinae 89

6.1.3 – Objectives 94

6.2 – Materials and Methods 94

6.2.1 – Seed and inoculum sources, with site descriptions 94

6.2.2 – Symbiotic germination 102

6.2.3 – Statistics 103

6.2.4 – DNA extraction and amplified fragment length polymorphism (AFLP) 103

6.3 – Results 104

6.3.1 – Symbiotic germination 104

6.3.2 – Amplified fragment length polymorphism (AFLP) 109

6.4 – Discussion 113

Chapter 7 – The role of mycorrhiza in microniche specialisation in the narrow endemic *Drakaea* 121
7.1 – Introduction
 7.1.1 – The study of orchid mycorrhizal fungi *ex situ*
 7.1.2 – Microniche specialisation in *Drakaea* species
 7.1.3 – Objectives
7.2 – Materials and Methods
 7.2.1 – Site descriptions
 7.2.2 – Seed sources
 7.2.3 – *Ex situ* seed baiting
 7.2.4 – Statistics
7.3 – Results
 7.3.1 – Brookton Highway
 7.3.2 – Canning Mills Road
7.4 – Discussion

Chapter 8 – Introduction, growth and persistence *in situ* of orchid mycorrhizal fungi
8.1 – Introduction
 8.1.1 – Orchid mycorrhizal fungi *in situ*
 8.1.2 – *In situ* seed baiting
 8.1.3 – Objectives
8.2 – Materials and Methods
 8.2.1 – Site description
 8.2.2 – Seed and inoculum sources
 8.2.3 – *In situ* seed baiting
 8.2.4 – Statistics
8.3 – Results
 8.3.1 – Climatic conditions during the study period
 8.3.2 – Germination and development to stages 3 and above
 8.3.3 – Germination and development to more advanced stages (stages 5 and above)
 8.3.4 – Effect of watering on germination
8.4 – Discussion

Chapter 9 – General discussion

Appendix 1 – Culture media
A1.1 – Oatmeal agar
A1.2 – Fungal Isolation Medium (FIM) 173
A1.3 – Modified Soil Solution Equivalent Agar for Western Australian Soils (SSE) 173
A1.4 – 1/5 Potato Dextrose Agar (PDA) 174
A1.5 – Streptomycin Sulphate 174

Appendix 2 – The effect of gelling agents on growth of mycorrhizal fungi and symbiotic germination of Drakaea and Paracaleana species 175
A2.1 – Introduction 175
A2.2 – Materials and Methods 175
 A2.2.1 – Fungal growth rates on media containing different gelling agents 175
 A2.2.2 – Symbiotic germination on media containing different gelling agents 176
A2.3 – Results 177
 A2.3.1 – Fungal growth rates on media containing different gelling agents 177
 A2.3.2 – Symbiotic germination on media containing different gelling agents 180
A2.4 – Discussion 181

Appendix 3 – Nei Genetic Distance between AFLP fingerprints of fungal isolates 185
A3.1 – Caladenia arenicola complex 185
A3.2 – Caladenia hybrids 186
A3.3 – Caladenia falcata 187
A3.4 – Drakaeinae 188

Appendix 4 – Optimisation of DNA extraction for AFLP analysis of mycorrhizal fungi of terrestrial orchids (Caladeniinae and Drakaeinae) 189
A4.1 – Introduction 190
A4.2 – Materials and Methods 191
 A4.2.1 – Fungal isolation and culture maintenance 191
 A4.2.2 – Fungal growth in liquid culture 192
 A4.2.3 – DNA extraction 192
 A4.2.4 – Quantification and visualisation of the DNA 193
 A4.2.5 – AFLP 193
A4.3 – Results and discussion 194
 A4.3.1 – DNA extraction, quantification and visualisation 194
 A4.3.2 – AFLP 195

References 199
Acknowledgements

My supervisors, Professor Jen McComb and Dr Kingsley Dixon, provided excellent guidance, support, encouragement and advice throughout my research. Dr Andrew Batty and Dr Mark Brundrett provided technical and experimental advice. Dr Andrew Brown and Dr Steven Hopper advised on the selection of species, particularly *Caladenia* hybrids, as well as photographs and location details (Andrew Brown).

Robyn Taylor provided considerable technical assistance and advice in the genetics lab and ran many gels for me. The genetics work could not have been completed without her.

Dr Siegfried Krauss and Dr Tianhua He provided assistance and advice on the genetics work.

The Master Gardeners of Kings Park provided assistance in the laboratory and field; particular thanks to Ethel Lucas, an exemplary constructor of seed packets, and Philip Shaw, who counted more seedlings than anyone could reasonably be expected to.

Many dedicated volunteers assisted me in the laboratory and field, some over a period of years. They are too many to mention individually, but special thanks go to Rob Holland, Frank Turnbull, Don Smith, Rosalie Wells, Trudy Paap, Christina Mueller, and Nicolas Alleonard.

Many enthusiasts, including the late Ron Heberle, Gary Brockman, Eric Chapman, Clive Malcolm, Greg Bussell, Barbara Thomson, and John and Leonie Brighton, shared their knowledge with me, showed me where to find the species and hybrids I needed, and allowed me to collect on their properties. Other people, including some in Victoria (Helen Richards in particular), collected and provided materials.

Last but not least, thanks to my family and friends for keeping me sane; in particular Sally Craddock and Alex Hollick, and Wally (four years of jokes about *Drakaeas* and *Duckaeas*) and Marion Phoebe.