Phylogenetic and ecological characterisation of the root nodule bacteria from legumes in the African genus *Lessertia*

Macarena Gerding González

This thesis is presented for the degree of

Doctor of Philosophy of

Murdoch University

December 2011
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Macarena Gerding González
ABSTRACT

Legumes of the genus *Lessertia* have recently been introduced to Western Australia in an attempt to increase the diversity of perennial legumes available to help remediate effects of climate change and dryland salinity. These species were introduced along with a collection of rhizobia isolated from *Lessertia* in different agro climatic areas of the Eastern and Western Cape, South Africa.

The aim of the thesis was to perform a phylogenetic and ecological characterisation of rhizobia isolated from the herbaceous legume *Lessertia* spp. The first specific aim was to characterize 73 isolates of rhizobia associated with *Lessertia* spp. Isolates were authenticated on their original hosts and diversity at strain level was determined by ERIC- and RPO1-PCR fingerprinting analysis. Forty three distinct authenticated strains showed diverse colony morphology and growth rate.

The diversity and phylogeny of the 43 strains was examined via *dnaK*, 16srRNA and *nodA* partial sequencing. Strains were identified as *Mesorhizobium* except one strain that was identified as *Burkholderia* sp. 16s rRNA phylogeny of 17 strains was overall congruent with the *dnaK* phylogeny. The topology of the housekeeping genes phylogram was independent of the original host and geographical origin of the strains. The *nodA* sequences formed a unique cluster separate from previously known *Mesorhizobium nodA* sequences, and when compared with that of the 16s rRNA and *dnak* genes, showed a wide dispersion of nodulation genes among the different *Mesorhizobium* clades indicating possible genetic transfer.

A glasshouse experiment was set up to assess the symbiotic interaction between six *Lessertia* species (*L. diffusa, L. incana, L. excisa, L. herbacea, L. capitata* and *L. pauciflora*) and 17 rhizobial strains, selected from different phylogenetic clusters. The strains showed marked differences in their nodulation patterns. *L. diffusa, L. herbacea* and *L. excisa* were nodulated by
most of the strains tested, and fixed nitrogen with 10, 7 and 4 strains respectively, while the other three hosts were quite selective. Interestingly, strains belonging to the same cluster in the \textit{nodA} phylogeny showed similar nodulation patterns in the glasshouse experiment. WSM3636, WSM3612, WSM3565 and WSM3898 were selected for field experiments.

\textit{L. capitata}, \textit{L. diffusa}, \textit{L. excisa} \textit{L. incana} and \textit{L. herbacea} were sown, along with their selected rhizobial strains, at five different agroclimatic areas of the Western Australian Wheatbelt: Badgingarra, Buntine, Katanning, Newdegate and Muresk. However, surviving plant populations in the field were lower than expected and although these species are perennials, most plants showed no or little regrowth after summer. To assess whether these problems were related to the adaptation and saprophytic ability of their root nodule bacteria, two field and a glasshouse experiments were carried out. Trap plants were established around surviving \textit{Lessertia} plants at the Badgingarra site. At Buntine and Merredin, \textit{L. capitata}, \textit{L. diffusa}, \textit{L. excisa} \textit{L. incana} and \textit{L. herbacea} were sown and inoculated with their appropriate inoculant to assess plant establishment, summer survival and nodulation. In addition, soils were collected from \textit{Lessertia} plots at the five sites where \textit{Lessertia} had been sown a year earlier. The soil samples were used to set up a soil trapping experiment in the glasshouse using the same five species of \textit{Lessertia}. Nodulation was assessed and the root nodule bacteria were re-isolated and PCR fingerprinted. None of the trap plants at Badgingarra had nodules on their roots, suggesting that the inoculant strains were not able to survive in or to colonize that soil. Plant populations at Buntine and Merredin were again very low and the plants sampled were poorly nodulated. Results from the glasshouse experiment showed that \textit{L. herbacea} and \textit{L. diffusa} were able to nodulate in most of the soils, \textit{L. capitata}, and \textit{L. incana} only in two of them and \textit{L. excisa} in none. Original inoculants could not be isolated from nodules, and strains occupying the nodules were identified as \textit{Rhizobium leguminosarum} rather than \textit{Mesorhizobium} spp. Since \textit{Mesorhizobium} is known to have the ability to transfer symbiotic genes through a symbiosis island, the \textit{nodA} gene was sequenced for all the “new” strains. The \textit{nodA} sequences were again clustered with \textit{R. leguminosarum} sequences, thus
discarding the prospect of lateral gene transference from *Mesorhizobium*, and suggesting a competition problem with indigenous rhizobia.

Two field experiments were set up at Karridale, Western Australia, a site with more benign conditions to assess the effect of increased doses of an effective inoculant strain (WSM3565) with *L. herbacea*, and to study the competitive ability and symbiotic performance of different *Mesorhizobium* strains nodulating *L. diffusa*. Increasing the inoculation dose of *L. herbacea* with WSM3565 did not improve establishment and survival of the legume. Although WSM3565 nodule occupancy improved from 28 to 54% with higher doses of inoculation, none of the treatments increased *L. herbacea* yield over the inoculated control.

The inoculation of *L. diffusa* with strains WSM3598, 3636, 3626 and 3565 resulted in greater biomass production than the uninoculated control. These strains were able to outcompete resident rhizobia and to occupy a high (>60%) proportion of lateral root nodules.

The high numbers of resident *R. leguminosarum* in Western Australian soils, and their ability to nodulate *Lessertia spp.* represent a barrier to the successful introduction of the exotic legume genus *Lessertia* to Western Australian soils.
ACKNOWLEDGEMENTS

I would like to take this opportunity to thank the people who supported me throughout my PhD.

I would like to thank my supervisors for their assistance throughout this project. I am grateful to Graham O’Hara for his encouragement and guidance. Thanks to John Howieson for his great ideas and enthusiasm. My sincere thanks to Lambert Bräu for his permanent support and his invaluable help in the edition of this thesis.

I acknowledge the financial support of Murdoch University through the International Postgraduate Research Scholarship (IPRS) and a Murdoch Studentship. I would also like to acknowledge the financial assistance of Universidad de Concepción and the Chilean Government through the Mecesup Studentship.

I am grateful to Daniel Real and Ron Yates from the Department of Agriculture and Food of Western Australia (DAFWA) for their support in the field studies in the Wheatbelt and Karridale.

I would like to thank all the CRS research team. In particular to Sharon Fox, Bec Swift, Rob Walker and Vanessa Melino for their friendship and good vibes. Thanks to Julie Ardley for her friendship and for our very productive writing sessions. To Regina Carr for her technical support in my glasshouse experiments and for providing me with very good photos of Lessertia. My deepest thanks to my friends Regina and Steve Carr, Jason Terpolilli, Lambert Bräu, William Lee, Helena Moneta and “my aussie sister” Yvette Hill for all the happy moments we shared and for always being there for me and my family.
I would like to thank my parents Marcos and María Inés for their unconditional support, wise advice, and for being an inspiration to me. I would also like to thank my parents in law María Eliana and Sergio for their genuine interest and encouragement.

I wish to thank my wonderful sons Martín and Pedro for their unconditional love, and for always being happy and healthy boys. You two make it all worthwhile.

Finally, my deepest thanks to my husband and best friend Felipe, for his love, patience, confidence in me and his invaluable help in my field experiments. I would not have completed this thesis without you.
PUBLICATIONS ARISING FROM THIS THESIS

Refereed Conference Abstracts:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>V</td>
</tr>
<tr>
<td>PUBLICATIONS ARISING FROM THIS THESIS</td>
<td>VII</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>VIII</td>
</tr>
<tr>
<td>CHAPTER 1: Literature Review</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Challenges for agriculture in South Western Australia</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Impact of climate change in South Western Australian agriculture</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Inclusion of perennial species into agricultural systems</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Legumes</td>
<td>7</td>
</tr>
<tr>
<td>1.5 South African Western Cape as a source of perennial species for South Western Australia</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Lessertia spp.</td>
<td>13</td>
</tr>
<tr>
<td>1.7 Root nodule bacteria</td>
<td>20</td>
</tr>
<tr>
<td>1.8 Rhizobia-legume symbiotic interaction</td>
<td>22</td>
</tr>
<tr>
<td>1.8.1 Recognition and plant infection</td>
<td>22</td>
</tr>
<tr>
<td>1.8.2 Bacterial invasion and release into cells</td>
<td>24</td>
</tr>
<tr>
<td>1.9 Rhizobial inoculants</td>
<td>28</td>
</tr>
<tr>
<td>1.10 Constraints to adaptation of introduced rhizobia</td>
<td>29</td>
</tr>
<tr>
<td>1.11 Approaches and Aims of the thesis</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER 2. Authentication, characterisation and diversity of Lessertia spp. root nodule bacteria</td>
<td>33</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>35</td>
</tr>
<tr>
<td>2.2 Material and Methods</td>
<td>37</td>
</tr>
<tr>
<td>2.2.1 Bacterial culture conditions</td>
<td>37</td>
</tr>
<tr>
<td>2.2.2 Molecular Fingerprinting</td>
<td>37</td>
</tr>
<tr>
<td>2.2.3 Authentication of isolates as root nodule bacteria</td>
<td>40</td>
</tr>
</tbody>
</table>
4.2.5 Molecular Fingerprinting ... 99

4.2.6 Authentication and assessment of effectiveness of field strains ... 100

4.2.7 Sequencing of the genes dnaK and nodA for soil trapped strains ... 101

4.2.8 Nodulation of Lessertia spp. by commercial inoculants .. 101

4.3 Results .. 104

4.3.1 Establishment of Lessertia spp. in the field (June 2007–March 2008) ... 104

4.3.2 Inoculant survival and soil colonization ... 105

4.3.3 Recovering rhizobia from five different sites in the Wheatbelt .. 107

4.3.4 Establishment of Lessertia spp. in the field (Year 2008) .. 108

4.3.5 Molecular Fingerprinting .. 110

4.3.6 Authentication and assessment of effectiveness of field strains ... 112

4.3.7 Sequencing of the genes dnaK and nodA for soil trapped strains ... 113

4.3.8 Nodulation of Lessertia spp. by commercial inoculants .. 115

4.4 Discussion ... 118

CHAPTER 5. Competitive ability of Mesorhizobium strains from Lessertia spp. ... 125

5.1 Introduction .. 127

5.2 Materials and Methods ... 128

5.2.1 Experiment 1: Effect of rate of inoculation of WSM3565 on symbiotic performance with L. herbacea .. 129

5.2.2 Experiment 2: Competitive ability of different strains of Mesorhizobium for nodulation of Lessertia diffusa .. 131

5.2.3 Statistical analyses .. 133

5.3 Results .. 134

5.3.1 Effect of rate of inoculation of WSM3565 on symbiotic performance with L. herbacea .. 134

5.3.2 Competitive ability of different strains of Mesorhizobium nodulating Lessertia diffusa 139

5.4 Discussion ... 143

CHAPTER 6. General Discussion ... 149

6.1 Potential of Lessertia spp. for Western Australian stressful environments .. 151

6.2 Rhizobial competition and legume promiscuity as constraints for establishment of Lessertia spp. 153
6.3 Future research ... 156
6.4 Concluding remarks .. 157
References .. 159
Appendices ... 183