Catalog Home Page

Multistage and multiple biomass approaches to efficient biological nitrogen removal using biofilm cultures

Hughes, Leonie (2008) Multistage and multiple biomass approaches to efficient biological nitrogen removal using biofilm cultures. PhD thesis, Murdoch University.

[img]
Preview
PDF - Front Pages
Download (109kB) | Preview
    [img]
    Preview
    PDF - Whole Thesis
    Download (4MB) | Preview

      Abstract

      Nitrogen removal from wastewater is important for the revention of significant health and environmental impacts such as eutrophication. Nitrogen removal is achieved by the combined action of nitrification and denitrification. Nitrification is performed by autotrophic, slow growing microorganisms that require oxygen and are inhibited in the presence of denitrifiers when oxygen and COD are available due to competition for oxygen. Denitrification however, performed by relatively fast growing heterotrophic bacteria, is inhibited by oxygen and requires COD. This implies that nitrification and denitrification are mutually exclusive. The supply of oxygen to a fresh wastewater, high in ammonia and COD, causes waste of both oxygen and COD. Conservation of COD is therefore critical to efficient wastewater treatment. The approach investigated in this study to achieve complete nitrogen removal was to physically separate the nitrification and denitrification biomasses into separate bioreactors, supplying each with appropriate conditions for growth and activity.

      A storage driven denitrification sequencing batch biofilm reactor (SDDR) was established which exhibited a high level of COD storage (up to 80% of influent COD) as poly-B-hydroxybutyrate capable of removing >99% of nitrogen from wastewaters with a C/N ratio of 4.7 kg COD/kg N–NO3 –. The SDDR was combined in sequential operation with a nitrification reactor to achieve complete nitrogen removal. The multiple stage, multiple biomass reactor was operated in sequence, with Phase 1 - COD storage in the storage driven denitrification biofilm; Phase 2 - ammonia oxidation in the nitrification reactor; and Phase 3 - nitrate reduction using the stored COD in the storage driven denitrification reactor. The overall rate of nitrogen removal observed was up to 1.1 mmole NH3 L–1 h–1 and >99% of nitrogen could be removed from wastewaters with a low C/N ratio of 3.9 kg COD/kg N–NH3.

      The multiple stage, multiple biomass system was limited in overall nitrogen removal the reduction in pH caused by nitrification. A parallel nitrification-denitrificatio (PND) reactor was developed in response to the pH control issue. The PND reactor was operated with Phase 1 – COD storage in the storage driven denitrification biofilm and Phase 2 – simultaneous circulation of reactor liquor between the denitrification and nitrification biofilms to achieve complete nitrogen removal and transfer of protons. The PND reactor performed competitively with the multistage reactor (removal of >99% nitrogen from wastewaters with feed ratios of 3.4 kg COD/kg N–NH3) without the need for addition of buffering material to oderate the pH.

      Publication Type: Thesis (PhD)
      Murdoch Affiliation: School of Biological Sciences and Biotechnology
      Supervisor: Cord-Ruwisch, Ralf
      URI: http://researchrepository.murdoch.edu.au/id/eprint/674
      Item Control Page

      Downloads

      Downloads per month over past year