Catalog Home Page

Multiclass classification using neural networks and interval neutrosophic sets

Kraipeerapun, P., Fung, C.C. and Wong, K.W. (2006) Multiclass classification using neural networks and interval neutrosophic sets. In: 5th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, 20-22 November 2006, Venice, Italy.

[img]
Preview
PDF - Published Version
Download (378kB) | Preview

    Abstract

    This paper presents a new approach to the problem of multiclass classification. The proposed approach has the capability to provide an assessment of the uncertainty value associated with the results of the prediction. Two feed-forward backpropagation neural networks, each with multiple outputs, are used. One network is used to predict degrees of truth membership and another network is used to predict degrees of false membership. Indeterminacy membership or uncertainty in the prediction of these two memberships is also estimated. Together these three membership values form an interval neutrosophic set. Hence, a pair of single multiclass neural networks with multiple outputs produces multiple interval neutrosophic sets. We experiment our technique to the classical benchmark problems including balance, ecoli, glass, lenses, wine, yeast, and zoo from the UCI machine learning repository. Our approach improves classification performance compared to an existing technique which applied only to the truth membership created from a single neural network with multiple outputs.

    Publication Type: Conference Paper
    Murdoch Affiliation: School of Information Technology
    Publisher: World Scientific and Engineering Academy and Society (WSEAS)
    URI: http://researchrepository.murdoch.edu.au/id/eprint/647
    Item Control Page

    Downloads

    Downloads per month over past year