Catalog Home Page

Iron and aluminium based adsorption strategies for removing arsenic from water

Giles, D.E., Mohapatra, M., Issa, T.B., Anand, S. and Singh, P. (2011) Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management , 92 (12). pp. 3011-3022.

Link to Published Version: http://dx.doi.org/10.1016/j.jenvman.2011.07.018
*Subscription may be required

Abstract

Arsenic is a commonly occurring toxic metal in natural systems and is the root cause of many diseases and disorders. Occurrence of arsenic contaminated water is reported from several countries all over the world. A great deal of research over recent decades has been motivated by the requirement to lower the concentration of arsenic in drinking water and the need to develop low cost techniques which can be widely applied for arsenic removal from contaminated water. This review briefly presents iron and aluminium based adsorbents for arsenic removal. Studies carried out on oxidation of arsenic(III) to arsenic(V) employing various oxidising agents to facilitate arsenic removal are briefly mentioned. Effects of competing ions, As:Fe ratios, arsenic(V) vs. arsenic(III) removal using ferrihydrite as the adsorbent have been discussed. Recent efforts made for investigating arsenic adsorption on iron hydroxides/oxyhydroxides/oxides such as granular ferric hydroxide, goethite, akaganeite, magnetite and haematite have been reviewed. The adsorption behaviours of activated alumina, gibbsite, bauxite, activated bauxite, layered double hydroxides are discussed. Point-of-use adsorptive remediation methods indicate that Sono Arsenic filter and Kanchan™ Arsenic filter are in operation at various locations of Bangladesh and Nepal. The relative merits and demerits of such filters have been discussed. Evaluation of kits used for at-site arsenic estimation by various researchers also forms a part of this review.

Publication Type: Journal Article
Publisher: Elsevier
Copyright: © 2011 Elsevier Ltd.
URI: http://researchrepository.murdoch.edu.au/id/eprint/5443
Item Control Page