Catalog Home Page

A feature vector approach for inter-query learning for content-based image retrieval

Chung, K.P. and Fung, C.C. (2007) A feature vector approach for inter-query learning for content-based image retrieval. Journal of Advanced Computational Intelligence and Intelligent Informatics, 11 (3). pp. 289-293.

[img]
Preview
PDF - Published Version
Download (62kB) | Preview
    Link to Published Version: http://www.fujipress.jp/finder/xslt.php?mode=prese...
    *Subscription may be required

    Abstract

    Use of relevance feedback (RF) in the feature vector model has been one of the most widely used approaches to fine tuning queries for content-based image retrieval (CBIR). We propose a framework that extends RF to capturing the inter-query relationship between current and previous queries. Using the feature vector model, this avoids the need to memorize actual retrieval relationships between actual image indexes and the previous queries. This approach is suited to image database applications in which images are frequently added and removed. In the previous work, we developed a feature vector framework for inter-query learning using statistical discriminant analysis. One weakness of the previous framework is that the criteria for exploring and merging with an existing visual group are based on two constant thresholds, which are selected through trial and error. Another weakness is that it is not suited to mutually interrelated data clusters. Instead of using constant values, we have further extended the framework using positive feedback sample size as a factor for determining thresholds. Experiments demonstrated that our proposed framework outperforms the previous framework.

    Publication Type: Journal Article
    Murdoch Affiliation: School of Information Technology
    Publisher: Fuji Technology Press Co. Ltd.
    Copyright: © Fuji Technology Press Co. Ltd.
    URI: http://researchrepository.murdoch.edu.au/id/eprint/520
    Item Control Page

    Downloads

    Downloads per month over past year