Catalog Home Page

Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA

Kiepiela, P., Leslie, A.J., Honeyborne, I., Ramduth, D., Thobakgale, C., Chetty, S., Rathnavalu, P., Moore, C.B., Pfafferott, K.J., Hilton, L., Zimbwa, P., Moore, S., Allen, T., Brander, C., Addo, M.M., Altfeld, M., James, I., Mallal, S., Bunce, M., Barber, L.D., Szinger, J., Day, C., Klenerman, P., Mullins, J., Korber, B., Coovadia, H.M., Walker, B.D. and Goulder, P.J.R. (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature, 432 (7018). pp. 769-775.

Link to Published Version: http://dx.doi.org/10.1038/nature03113
*Subscription may be required

Abstract

The extreme polymorphism in the human leukocyte antigen (HLA) class I region of the human genome is suggested to provide an advantage in pathogen defence mediated by CD8+ T cells. HLA class I molecules present pathogen-derived peptides on the surface of infected cells for recognition by CD8+ T cells. However, the relative contributions of HLA-A and -B alleles have not been evaluated. We performed a comprehensive analysis of the class I restricted CD8+ T-cell responses against human immunodeficiency virus (HIV-1), immune control of which is dependent upon virus-specific CD8+ T-cell activity. In 375 HIV-1-infected study subjects from southern Africa, a significantly greater number of CD8+ T-cell responses are HLA-B-restricted, compared to HLA-A (2.5-fold; P = 0.0033). Here we show that variation in viral set-point, in absolute CD4 count and, by inference, in rate of disease progression in the cohort, is strongly associated with particular HLA-B but not HLA-A allele expression (P < 0.0001 and P = 0.91, respectively). Moreover, substantially greater selection pressure is imposed on HIV-1 by HLA-B alleles than by HLA-A (4.4-fold, P = 0.0003). These data indicate that the principal focus of HIV-specific activity is at the HLA-B locus. Furthermore, HLA-B gene frequencies in the population are those likely to be most influenced by HIV disease, consistent with the observation that B alleles evolve more rapidly than A alleles. The dominant involvement of HLA-B in influencing HIV disease outcome is of specific relevance to the direction of HIV research and to vaccine design

Publication Type: Journal Article
Murdoch Affiliation: Centre for Clinical Immunology and Biomedical Statistics
Publisher: Nature Publishing Group
Copyright: © 2004 Nature Publishing Group
URI: http://researchrepository.murdoch.edu.au/id/eprint/5149
Item Control Page