Catalog Home Page

Electrochemistry of cathode materials in aqueous lithium hydroxide electrolyte

Minakshi Sundaram, Manickam (2006) Electrochemistry of cathode materials in aqueous lithium hydroxide electrolyte. PhD thesis, Murdoch University.

[img]
Preview
PDF - Front Pages
Download (1095kB) | Preview
    [img]
    Preview
    PDF - Whole Thesis
    Download (38MB) | Preview
      [img]
      Preview

      Abstract

      Electrochemical behavior of electrolytic manganese dioxide (EMD), chemically prepared battery grade manganese dioxide (BGM), titanium dioxide (TiO2), lithium iron phosphate (LiFePO4) and lithium manganese phosphate (LiMnPO4) in aqueous lithium hydroxide electrolyte has been investigated. These materials are commonly used as cathodes in non-aqueous electrolyte lithium batteries. The main aim of the work was to determine how the electroreduction/oxidation behavior of these materials in aqueous LiOH compares with that reported in the literature in non-aqueous electrolytes in connection with lithium batteries. An objective was to establish whether these materials could also be used to develop other battery systems using aqueous LiOH as electrolyte.

      The electrochemical characteristics of the above materials were investigated by subjecting them to slow scan cyclic voltammetry and determining the charge/discharge characteristics of Zn/cathode material-aqueous LiOH batteries. The products of electroreduction/oxidation were characterized by physical techniques using X-ray diffraction (XRD), scanning electron micrography (SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), Thermogravimetric analysis (TG) and infra-red spectrometry (IR).

      The reduction of gamma-MnO2 (EMD) in aqueous lithium hydroxide electrolyte is found to result in intercalation of Li+ into the host structure of gamma-MnO2. The process was found to be reversible for many cycles. This is similar to what is known to occur for gamma-MnO2 in non-aqueous electrolytes. The mechanism, however, differs from that for reduction/oxidation of gamma-MnO2 in aqueous potassium hydroxide electrolyte. KOH electrolyte is used in the state-of-art aqueous alkaline Zn/MnO2 batteries. Alkaline batteries based on aqueous KOH as the electrolyte rely upon a mechanism other than K+ intercalation into MnO2. This mechanism is not reversible. This is explained in terms of the relative ionic sizes of Li+ and K+. The lithium-intercalated MnO2 lattice is stable because Li+ and Mn4+ are of approximately the same size and hence Li+ is accommodated nicely into the host lattice of MnO2. The K+ ion which has almost double the size of Li+ cannot be appropriately accommodated into the host structure and hence the K+ -intercalated MnO2 phase is not stable.

      Chemically prepared battery grade MnO2 (BGM) is found to undergo electroreduction/oxidation in aqueous LiOH via the same Li+ intercalation mechanism as for the EMD. While the Zn/BGM- aqueous LiOH cell discharges at a voltage higher than that for the Zn/EMD- aqueous LiOH cell under similar conditions, the rechargeability and the material utilization of the BGM cell is poorer.

      The cathodic behavior of TiO2 (anatase phase) in the presence of aqueous LiOH is not reversible. In addition to LiTiO2, Ti2O3 is also formed. The discharge voltage of the Zn/TiO2- aqueous LiOH cell and material utilization of the TiO2 as cathode are very low. Hence TiO2 is not suitable for use in any aqueous LiOH electrolyte battery.

      LiFePO4 (olivine-type structure) as a cathode undergoes electrooxidation in aqueous LiOH forming FePO4. However the subsequent reduction forms not only the original LiFePO4 but also Fe3O4. Thus the process is not completely reversible and hence LiFePO4 is not a suitable material for use as a cathode in aqueous battery systems.

      LiMnPO4 (olivine-type structure) undergoes reversible electrooxidation in aqueous LiOH forming MnPO4. The charge/discharge voltage profile of the Zn/MnPO4-aqueous LiOH cell, its coulombic efficiency and rechargeability are comparable to that of the cell using gamma-MnO2. EMD and LiMnPO4 both have the potential for use in rechargeable batteries using aqueous LiOH as the electrolyte. Recommendations for further developmental work for such batteries are made.

      Publication Type: Thesis (PhD)
      Murdoch Affiliation: School of Engineering Science
      Supervisor: Singh, Pritam and Thurgate, Steven
      URI: http://researchrepository.murdoch.edu.au/id/eprint/450
      Item Control Page

      Downloads

      Downloads per month over past year