Catalog Home Page

Harmonic analysis of probability measures on hypergroups

Bloom, W.R. and Heyer, H. (1995) Harmonic analysis of probability measures on hypergroups. Degruyter, Berlin/New York.

Google Books Preview:
*Open access. Some pages may not be available


A systematic presentation of the applications of the hypergroup method to problems in probability theory that deals exclusively with topological hypergroups, focusing on those that are commutative. It considers hypergroups as locally compact spaces with a group-like structure on which the bounded measures convolve in a similar way to that on a locally compact group. The volume covers hypergroups and their measure algebras, the dual of a commutative hypergroup, some special classes of hypergroups, positive and negative definite functions and measures, convolution semigroups and divisibility of measures, transience of convolution semigroups, and randomized sums of hypergroup-valued random variables...

Publication Type: Book
Murdoch Affiliation: School of Mathematical and Physical Sciences
Publisher: Degruyter
Copyright: 1994 Walter Degruyter & Co
Publishers Website:
Other Information: Series: De Gruyter Studies in Mathematics; No. 20
Item Control Page Item Control Page