Catalog Home Page

Minkowski tensors of anisotropic spatial structure

Schröder-Turk, G.E., Mickel, W., Kapfer, S.C., Schaller, F.M., Breidenbach, B., Hug, D. and Mecke, K. (2013) Minkowski tensors of anisotropic spatial structure. New Journal of Physics, 15 .

PDF - Published Version
Download (1MB) | Preview
Link to Open Access version:
*No subscription required


This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalizations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The paper further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic formalism more readily accessible for future application in the physical sciences.

Publication Type: Journal Article
Publisher: Institute of Physics Publishing
Copyright: 2013 IOP Publishing and Deutsche Physikalische Gesellschaft
Item Control Page Item Control Page


Downloads per month over past year