Catalog Home Page

Geographic isolation of Diplodia scrobiculata and its association with native Pinus radiata

Burgess, T.I., Gordon, T.R., Wingfield, M.J. and Wingfield, B.D. (2004) Geographic isolation of Diplodia scrobiculata and its association with native Pinus radiata. Mycological Research, 108 (12). pp. 1399-1406.

[img]
Preview
PDF - Published Version
Download (144kB) | Preview
    Link to Published Version: http://dx.doi.org/10.1017/S0953756204001443
    *Subscription may be required

    Abstract

    Diplodia pinea (syn. Sphaeropsis sapinea) is a well-known latent pathogen of Pinus spp. with a worldwide distribution. As such, this fungus is native where pines are endemic in the northern hemisphere and it has been introduced into all countries of the Southern Hemisphere where pines are exotic. The newly described D. scrobiculata (formerly known as the B morphotype of D. pinea) is thought to have a much more limited distribution. D. scrobiculata was first reported as an endophyte and weak pathogen of P. banksiana, where it was found to coexist with D. pinea. Diplodia scrobiculata is now known to have a much broader distribution in Northern America and Europe. In this study, seven Simple Sequence Repeat (SSR) markers were used to evaluate genetic diversity and gene flow between populations of D. scrobiculata. Results indicate a strong geographic isolation between populations of D. scrobiculata from different regions in North America, with unique alleles fixed in the different populations. The data fits the isolation by distance model indicating limited dispersal. Geographic isolation in combination with isolation by distance suggests prolonged reproductive isolation. Intensive collections of endophytes from native P. radiata in California have yielded only D. scrobiculata and not the significantly more pathogenic D. pinea. SSR analysis of three populations of D. scrobiculata from native P. radiata identified many shared alleles among the populations and moderate to high gene flow between them. The three Californian populations are distant and distinct from populations of D. scrobiculata from elsewhere. Under stress conditions, P. radiata is known to be very susceptible to D. pinea in plantations in the Southern Hemisphere. Native P. radiata is currently experiencing severe stress due to pitch canker caused by Fusarium circinatum. Such stress would provide ideal conditions for an associated outbreak of D. pinea. Thus, it is critical to prevent the movement of D. pinea into the last remaining native stands of P. radiata.

    Publication Type: Journal Article
    Murdoch Affiliation: School of Biological Sciences and Biotechnology
    Publisher: Cambridge University Press
    Copyright: (c)The British Mycological Society
    URI: http://researchrepository.murdoch.edu.au/id/eprint/3046
    Item Control Page

    Downloads

    Downloads per month over past year