Catalog Home Page

Methylation-capture and Next-Generation sequencing of free circulating DNA from human plasma

Warton, K., Lin, V., Navin, T., Armstrong, N.J., Kaplan, W., Ying, K., Gloss, B., Mangs, H., Nair, S.S., Hacker, N.F., Sutherland, R.L., Clark, S.J. and Samimi, G. (2014) Methylation-capture and Next-Generation sequencing of free circulating DNA from human plasma. BMC Genomics, 15 (1). pp. 476-489.

PDF - Published Version
Download (791kB)
Link to Open Access version:
*No subscription required


Free circulating DNA (fcDNA) has many potential clinical applications, due to the non-invasive way in which it is collected. However, because of the low concentration of fcDNA in blood, genome-wide analysis carries many technical challenges that must be overcome before fcDNA studies can reach their full potential. There are currently no definitive standards for fcDNA collection, processing and whole-genome sequencing. We report novel detailed methodology for the capture of high-quality methylated fcDNA, library preparation and downstream genome-wide Next-Generation Sequencing. We also describe the effects of sample storage, processing and scaling on fcDNA recovery and quality.

Use of serum versus plasma, and storage of blood prior to separation resulted in genomic DNA contamination, likely due to leukocyte lysis. Methylated fcDNA fragments were isolated from 5 donors using a methyl-binding protein-based protocol and appear as a discrete band of ~180 bases. This discrete band allows minimal sample loss at the size restriction step in library preparation for Next-Generation Sequencing, allowing for high-quality sequencing from minimal amounts of fcDNA. Following sequencing, we obtained 37×106-86×106 unique mappable reads, representing more than 50% of total mappable reads. The methylation status of 9 genomic regions as determined by DNA capture and sequencing was independently validated by clonal bisulphite sequencing.

Our optimized methods provide high-quality methylated fcDNA suitable for whole-genome sequencing, and allow good library complexity and accurate sequencing, despite using less than half of the recommended minimum input DNA.

Publication Type: Journal Article
Publisher: BioMed Central
Copyright: © 2014 Warton et al
Item Control Page Item Control Page


Downloads per month over past year