Catalog Home Page

3D free form object recognition using rotational projection statistics

Guo, Y., Bennamoun, M., Sohel, F.A., Wan, J. and Lu, M. (2013) 3D free form object recognition using rotational projection statistics. In: IEEE Workshop on Applications of Computer Vision (WACV) 2013, 15 - 17 January 2013, Tampa, FL pp. 1-8.

Link to Published Version:
*Subscription may be required


Recognizing 3D objects in the presence of clutter and occlusion is a challenging task. This paper presents a 3D free form object recognition system based on a novel local surface feature descriptor. For a randomly selected feature point, a local reference frame (LRF) is defined by calculating the eigenvectors of the covariance matrix of a local surface, and a feature descriptor called rotational projection statistics (RoPS) is constructed by calculating the statistics of the point distribution on 2D planes defined from the LRF. It finally proposes a 3D object recognition algorithm based on RoPS features. Candidate models and transformation hypotheses are generated by matching the scene features against the model features in the library, these hypotheses are then tested and verified by aligning the model to the scene. Comparative experiments were performed on two publicly available datasets and an overall recognition rate of 98.8% was achieved. Experimental results show that our method is robust to noise, mesh resolution variations and occlusion.

Publication Type: Conference Paper
Item Control Page Item Control Page