Catalog Home Page

Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments

Cheng, L., Shahin, M.A. and Cord-Ruwisch, R. (2014) Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique, 64 (12). pp. 1010-1013.

Link to Published Version:
*Subscription may be required


This study proposes and describes a novel approach for cementing sandy soils in marine environments by modifying the promising technique of microbially induced carbonate precipitation (MICP). In contrast to the usual MICP technique described in the literature, the method proposed herein relies on the calcium ions dissolved in seawater as the sole source of calcium for calcite formation. This proposed method involves flushing high-salinity-tolerant, urease-active bacteria followed by a mixture of urea and seawater through a porous sandy soil, leading to bacterial carbonate release from the urease reaction and precipitation of insoluble and semi-soluble carbonate salts including calcium carbonate and magnesium carbonate trihydrate. This precipitation method resulted in a physical stabilisation of sand that reached an unconfined compressive strength of up to 300 kPa, which is about two-fold higher (with same amount of crystals produced) than that of the MICP treatment in which highly concentrated calcium and urea solutions are used. Permeability was retained at about 30% for all MICP-treated samples, suggesting good drainage ability. This new exploration of MICP technology provides a high potential for using bio-cementation in marine environments, for applications such as mitigation of submarine sediment liquefaction and prevention of beach sand erosion and cliffs scouring.

Publication Type: Journal Article
Murdoch Affiliation: School of Engineering and Information Technology
Publisher: ICE Publishing
Item Control Page Item Control Page