Catalog Home Page

Metabolomic profiling of faecal extracts from cryptosporidium parvum infection in experimental mouse models

Ng-Hublin, J.S.Y., Ryan, U., Trengove, R. and Maker, G. (2013) Metabolomic profiling of faecal extracts from cryptosporidium parvum infection in experimental mouse models. PloS one, 8 (10). e77803.

PDF - Published Version
Download (571kB)
Link to Open Access version:
*No subscription required


Cryptosporidiosis is a gastrointestinal disease in humans and animals caused by infection with the protozoan parasite Cryptosporidium. In healthy individuals, the disease manifests mainly as acute self-limiting diarrhoea, but may be chronic and life threatening for those with compromised immune systems. Control and treatment of the disease is challenged by the lack of sensitive diagnostic tools and broad-spectrum chemotherapy. Metabolomics, or metabolite profiling, is an emerging field of study, which enables characterisation of the end products of regulatory processes in a biological system. Analysis of changes in metabolite patterns reflects changes in biochemical regulation, production and control, and may contribute to understanding the effects of Cryptosporidium infection in the host environment. In the present study, metabolomic analysis of faecal samples from experimentally infected mice was carried out to assess metabolite profiles pertaining to the infection. Gas-chromatography mass spectrometry (GC-MS) carried out on faecal samples from a group of C. parvum infected mice and a group of uninfected control mice detected a mean total of 220 compounds. Multivariate analyses showed distinct differences between the profiles of C. parvum infected mice and uninfected control mice,identifying a total of 40 compounds, or metabolites that contributed most to the variance between the two groups. These metabolites consisted of amino acids (n = 17), carbohydrates (n = 8), lipids (n = 7), organic acids (n = 3) and other various metabolites (n = 5), which showed significant differences in levels of metabolite abundance between the infected and uninfected mice groups (p < 0.05). The metabolites detected in this study as well as the differences in abundance between the C. parvum infected and the uninfected control mice, highlights the effects of the infection on intestinal permeability and the fate of the metabolites as a result of nutrient scavenging by the parasite to supplement its streamlined metabolism.

Publication Type: Journal Article
Murdoch Affiliation: Separation Science and Metabolomics Laboratory
School of Veterinary and Life Sciences
Publisher: Public Library of Science
Copyright: © 2013 Ng-Hublin et al.
Item Control Page Item Control Page


Downloads per month over past year