Catalog Home Page

Abundance of fish and crustacean postlarvae on portable artificial seagrass units: daily sampling provides quantitative estimates of the settlement of new recruits

Kenyon, R.A., Haywood, M.D.E., Heales, D.S., Loneragan, N.R., Pendrey, R.C. and Vance, D.J. (1999) Abundance of fish and crustacean postlarvae on portable artificial seagrass units: daily sampling provides quantitative estimates of the settlement of new recruits. Journal of Experimental Marine Biology and Ecology, 232 (2). pp. 197-216.

Link to Published Version: http://dx.doi.org/10.1016/S0022-0981(98)00107-5
*Subscription may be required

Abstract

Artificial collectors and seagrass units have mainly provided qualitative samples of epifaunal abundance or have been difficult and time-consuming to sample. Consequently, they are useful for distinguishing temporal or spatial trends in abundance or they are deployed for several weeks and, as a result, the quantitative samples are cumulative. We developed a portable artificial seagrass unit (ASU) with buoyant plastic artificial seagrass (47 cm long by 15 mm wide strips) that can be retrieved, harvested and re-deployed with 98% catch efficiency in about 5 min by two people from a small boat. They can quickly and easily quantify settlement of crustacean and fish postlarvae over tidal or deil periods. When set for 24 h, postlarvae settled from the plankton during the night and their abundance is the result of a distinct settlement event. When set for longer periods, the numbers of postlarvae may represent several settlement events and post-settlement activities. Crustacean and fish postlarvae and juveniles used ASUs deployed within seagrass in a similar way to natural seagrass. Estimates of juvenile tiger prawn abundance from beam-trawl catches showed similar densities in natural seagrass (2.93 Penaeus semisulcatus de Haan m−2 day) to those in the ASUs (2.40 P. semisulcatus m−2 day−1); their density was significantly lower on bare trays (0.48 P. semisulcatus m−2 day−1). When deployed on bare areas, more epifaunal crustacean postlarvae were collected from the ASUs (e.g. Portunus pelagicus Linnaeus, 1.21 m−2 day−1; caridean shrimp 4.03 m−2 day−1) than from the bare trays (e.g. P. pelagicus, 0.46 m−2 day−1; caridean shrimp 0.78 m−2 day−1). However, greater abundances of the postlarvae of other crustacean taxa were collected from the bare trays than the ASUs (e.g. Sergestes spp. 1.21 and 0.31 m−2 day−1; tiger prawn postlarvae 0.15 and 0.06 m−2 day−1, respectively). Sampling with portable ASUs allows settlement to be assessed temporally (e.g., daily or tidally) or spatially (e.g., distinct areas affected by different current regimes). The strength of settlement can be used to evaluate the productivity of nursery habitat for fishery populations.

Publication Type: Journal Article
Publisher: Elsevier BV
Copyright: © 1999 Elsevier Science B.V.
URI: http://researchrepository.murdoch.edu.au/id/eprint/12106
Item Control Page